Experimente in der Strömungsmechanik
(Experimental Fluid Mechanics)

<table>
<thead>
<tr>
<th>Relevance for ResEngin curriculum</th>
<th>compulsory elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>Inst. f. Hydromechanik</td>
</tr>
<tr>
<td>Contact</td>
<td>cornelia.lang@kit.edu</td>
</tr>
</tbody>
</table>

Term(s) offered
3rd term (Winter Oct-Mar)

Duration | Cycle
1 term; every other year

Language of instruction
German

Prerequisites
Bachelor, German language proficiency at DSH level

Module coordinator
LANG, Dr.-Ing. Cornelia; IfH [Modulverantwortliche]

Learning outcomes
Description see p. 2.

Literature / Course materials
Reference list see p. 3.

Basis for module(s)
not applicable

Intersection with module(s)
M 1 Hydraulic & Environmental Engineering
M 7 Integrated Projects

Lecture courses
(training mode)

<table>
<thead>
<tr>
<th>Lecture courses</th>
<th>19231 Experimente in d. Strömungsmechanik (lecture, excursion, labcourse)</th>
<th>5.0 CP</th>
<th>1+3 WCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUM</td>
<td>5.0 CP</td>
<td>4 WCH</td>
</tr>
</tbody>
</table>

Workload specification
(30 work hours → 1 CP acc. to ECTS)

Lecture Phase: Contact hours	10.5 h
	14.0 h
	31.5 h
	63.0 h

| Exam Phase: Self instruction | 30.0 h |

Module examination(s)
(mode | scope | weighting)

| “Strömungsmechanik” oral | 30 min | 5.0/5.0 CP |

Lecturers
(in alphabetic order)
- LANG, Dr.-Ing. Cornelia; IfH

Individual lecture courses
Descriptions + Recommended background knowledge see p. 4.
Module T1a: “Experimental Fluid Mechanics” (cont.)

Module topic

Application of experimental fluid mechanics.

Learning outcomes

Disciplinary knowledge

- **concepts, theories & definitions**
 similitude: requirements, dimensionless fluid parameters, scaling laws; modelling hydraulic problems: dimensional analysis, scale effects, design of hydraulic models, examples.

- **subject matter (factual data, examples)**
 pipe flow with orifice plate: pressure distribution, jet shape and contraction; open channel flow with vertical gate and hydraulic jump: measurement of pressure and water levels; venturi pipe flow with cavitation: pressure distribution; settling velocities of spheres: resistance in different fluids; diffusion of a turbulent air jet: transport of mass, energy and momentum.

- **methods & procedures**
 typical setup of hydraulic/aerodynamic models, measurement instrumentation.

Professional skills

- Capability of working with physical models and to interpret their results.
- Preparation of test reports. Presenting of results.

Personal competence

- Collaborative work on engineering project (physical model application).
Module T1a: “Experimental Fluid Mechanics” (cont.)

Literature/ Course material

Lecture notes
- “Experimente in der Strömungsmechanik”
Module T1a

Course

Experimente in der Strömungsmechanik

(Experimental Fluid Mechanics)

Experimemtal Fluid Mechanics: Physical Model Analysis

<table>
<thead>
<tr>
<th>KIT lecture ID</th>
<th>19231</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance</td>
<td>compulsory elective</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Bachelor, German proficiency (DSH level)</td>
</tr>
<tr>
<td>Term(s)</td>
<td>3rd term (winter)</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Training mode</td>
<td>Lecture, 1 WCH * Labcourse, 3 WCH</td>
</tr>
<tr>
<td>Workload</td>
<td>5.0 CP (\Rightarrow) 150.0 h</td>
</tr>
</tbody>
</table>

Workload specification

<table>
<thead>
<tr>
<th>LECTURE PHASE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact (based on 1 WCH)</td>
<td>10.5 h</td>
</tr>
<tr>
<td>Self Instruction</td>
<td>14.0 h</td>
</tr>
<tr>
<td>Lab work</td>
<td>31.5 h</td>
</tr>
<tr>
<td>Exam preparation</td>
<td>63.0 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXAM PHASE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-instruction</td>
<td>30.0 h</td>
</tr>
</tbody>
</table>

Contact

cornelia.lang@kit.edu

Lecturer(s)

LANG, Dr.-Ing. Cornelia; IfH

Course topic

Complex flow situations and the application of experimental fluid mechanics.

Recommended background knowledge

Fundamentals of Hydromechanics

Learning outcomes

Disciplinary knowledge

- **concepts, theories & definitions**
 similitude: requirements, dimensionless fluid parameters, scaling laws; modelling hydraulic problems: dimensional analysis, scale effects, design of hydraulic models, examples.

- **subject matter (factual data, examples)**
 pipe flow with orifice plate: pressure distribution, jet shape and contraction; open channel flow with vertical gate and hydraulic jump: measurement of pressure and water levels; venturi pipe flow with cavitation: pressure distribution; settling velocities of spheres: resistance in different fluids; diffusion of a turbulent air jet: transport of mass, energy and momentum.

- **methods & procedures**
 typical setup of hydraulic/aerodynamic models, measurement instrumentation

Professional skills

Capability of working with physical models and to interpret their results. Preparation of test reports. Presenting of results.

Personal competence

Collaborative work on engineering project (physical model application).

Assessment specification

written ---
oral 30 min \(=\) module exam “Strömungsmechanik”
other ---

* WCH = Weekly Contact Hours