Energiewasserbau (Hydropower Engineering) RESE M T1b

Relevance for ResEngin curriculum
- compulsory elective

Administration
- Inst. f. Wasser & Gew.entw.
- Wasserwirtschaft & Kulturtech.

Contact
- peter.oberle@kit.edu

Term(s) offered
- 2nd (Summer Apr–Sept)

Duration | Cycle
- 1 term; every year

Language of instruction
- German

Prerequisites
- Bachelor, German language proficiency at DSH level

Module coordinator
- OBERLE, Dr.-Ing. Peter; IWG-WK

Learning outcomes
- Description see p. 2.

Literature / Course materials
- Reference list see p. 3.

Basis for module(s)
- not applicable

Intersection with module(s)
- M 1 Hydraulic & Environmental Engineering

Lecture courses
- (training mode)
- 19208 Energiewasserbau (lecture)
 - 5.0 CP 4 WCH
 - SUM 5.0 CP 4 WCH

Workload specification
- (30 work hours → 1 CP acc. to ECTS) 5 x 30 h 150 h

Lecture Phase:
- Contact hours 42.0 h
- Self instruction 63.0 h

Exam Phase:
- Self instruction 45.0 h

Module examination(s)
- (mode | scope | weighting)
- “Energiewasserbau” written | 75 min | 5.0/5.0 CP

Lecturers
- OBERLE, Dr.-Ing. Peter; IWG-WK

Individual lecture courses
- Descriptions + Recommended background knowledge see p. 4.
Module T1b: “Hydropower Engineering” (cont.)

Module topic

The current political and legal framework as major context factor for practice-oriented planning, operation and maintenance of hydropower plants considering environmental issues.

Learning outcomes

Disciplinary knowledge

- **concepts, theories & definitions**
 turbines (e.g. Euler’s turbine equation); flow conditions in turbines; mass oscillation and water hammer phenomena; analysis of water power capacity; essentials for creating a plan of water-economic capability; electro-technical basics of power generation.

- **subject matter (factual data, examples)**
 constructional characteristics of river and high-pressure power plants; operating modes and selection criteria of different types of turbines as well as electro-technical aspects of the plants’ operation; consideration of ecological aspects and energy policy; presentation of current projects and excursions.

- **methods & procedures**
 technical background for planning and designing hydropower plants.

Professional skills

- Gain expertise in planning hydropower plants considering turbine pre-selection, structural dimensions (e.g. powerhouse, draft tube), and economic aspects.

Personal competence

- n.a.
Module T1b: “Hydropower Engineering” (cont.)

Literature/ Course material

Lecture notes

- “Energiewasserbau”
Course: Energiewasserbau (Hydropower Engineering)

<table>
<thead>
<tr>
<th>KIT lecture ID</th>
<th>19208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance</td>
<td>compulsory elective</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Bachelor, German proficiency (DSH level)</td>
</tr>
<tr>
<td>Term(s)</td>
<td>2nd term (summer)</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Training mode</td>
<td>Lecture, 4 WCH *</td>
</tr>
<tr>
<td>Workload</td>
<td>5.0 CP (\Rightarrow) 150.0 h</td>
</tr>
</tbody>
</table>

Workload specification

<table>
<thead>
<tr>
<th>LECTURE PHASE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact (based on 4 WCH)</td>
<td>42.0 h</td>
</tr>
<tr>
<td>Self Instruction</td>
<td>63.0 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXAM PHASE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-instruction</td>
<td>45.0 h</td>
</tr>
</tbody>
</table>

Lecturer(s)

OBERLE, Dr.-Ing. Peter; IWG-WK

Course topic

Current political and legal framework as major context factor for practice-oriented planning, operation and maintenance of hydropower plants considering environmental issues.

Recommended background knowledge

- Fundamentals in engineering physics and mathematics; statics and hydrodynamics; energy, environmental and social issues.

Learning outcomes

Disciplinary knowledge

- **concepts, theories & definitions**
 - Turbines (e.g., Euler's turbine equation); flow conditions in turbines; mass oscillation and water hammer phenomena; analysis of water power capacity; essentials for creating a plan of water-economic capability; electro-technical basics of power generation.

- **subject matter (factual data, examples)**
 - Constructional characteristics of river and high-pressure power plants; operating modes and selection criteria of different types of turbines as well as electro-technical aspects of the plants' operation; consideration of ecological aspects and energy policy; presentation of current projects and excursions.

- **methods & procedures**
 - Technical background for planning and designing hydropower plants

Professional skills

- Gain expertise in planning hydropower plants considering turbine pre-selection, structural dimensions (e.g., powerhouse, draft tube), and economic aspects.

Personal competence

- n.a.

Assessment specification

- **written** 75 min = module exam “Energiewasserbau”
- **oral** ---
- **other** ---

* WCH = Weekly Contact Hours