Numerische Modelle im Wasserbau
(Numerical Models in Hydraulic Engineering)

<table>
<thead>
<tr>
<th>Relevance for ResEngin curriculum</th>
<th>compulsory elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td></td>
</tr>
<tr>
<td>Inst. f. Wasser & Gew. entw.</td>
<td></td>
</tr>
<tr>
<td>Wasserwirtschaft & Kulturtech.</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td></td>
</tr>
<tr>
<td>peter.oberle@kit.edu</td>
<td></td>
</tr>
</tbody>
</table>

Term(s) offered	**3rd (Winter Oct.-Mar)**	
Duration	Cycle	**1 term; every year**
Language of instruction	**German**	
Prerequisites	Bachelor, German language proficiency at DSH level	

Module coordinator	**OBERLE, Dr.-Ing. Peter; IWG-WK** [Modulverantwortlicher]
Learning outcomes	Description see p. 2.
Literature / Course materials	Reference list see p. 3.

Basis for module(s)	**not applicable**
Intersection with module(s)	M 1 Hydraulic & Environmental Engineering
	MT1c Numerical Water Management Planning Tools

Lecture courses	**19208 Numerische Modelle im Wasserbau** (lecture, labcourse)
(training mode)	**5.0 CP 2+1 WCH**
SUM	**5.0 CP 3 WCH**

Workload specification	**(30 work hours → 1 CP acc. to ECTS)**
Lecture Phase:	**Contact hours** 21.0 h
	Self instruction 42.0 h
	Lab work 10.5 h
	Exam preparation 31.5 h
Exam Phase:	**Self instruction** 45.0 h

| **Module examination(s)** | **"Numerische Modelle"** |
| **(mode | scope | weighting)** | **oral | 20 min | 5.0/5.0 CP** |

| **Lecturers** | **OBERLE, Dr.-Ing. Peter; IWG-WK** |

| **Individual lecture courses** | **Descriptions + Recommended background knowledge** see p. 4. |
Module T1d: “Numerical Models in Hydraulic Engineering” (cont.)

Module topic

Choice of appropriate modeling techniques and assessment of uncertainties in hydraulic simulations for regional and local planning projects as well as interpretation of computation results.

Learning outcomes

Disciplinary knowledge

- **concepts, theories & definitions**
 physical equations and numeric solution procedures.

- **subject matter (factual data, examples)**
 base data (topography, hydrologic boundary conditions); modeling techniques and calibration; hydraulic evaluation of measures in the river valley; automated operation of barrages in rivers.

- **methods & procedures**
 data preparation and visualization by the use of GIS technology (pre- and post-processing).

Professional skills

- Application of one- and multi-dimensional hydrodynamic numeric river-flow models.

Personal competence

- Work on small projects in a team.
Module T1d: “Numerical Models in Hydraulic Engineering” (cont.)

Literature/ Course material

- Malcherek, A. (2001). *Hydromechanik der Fließgewässer*. Bericht Nr. 61, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen der Universität Hannover, Universität Hannover, 382 S.

Lecture notes

- “Numerische Modelle im Wasserbau”
Course: Numerische Modelle im Wasserbau
(Numerical Models in Hydraulic Engineering)

KIT lecture ID
19208/9

Relevance
compulsory elective

Prerequisites
- Bachelor,
- German proficiency
 (DSH level)

Term(s)
3rd term (winter)

Language
German

Training mode
- Lecture, 2 WCH *
- Labcourse, 1 WCH

Workload specification
- **5.0 CP** ⇒ **150 h**

Lecturer(s)
OBERLE, Dr.-Ing. Peter; IWG-WK

Course topic
Choice of appropriate modeling techniques; assessment of uncertainties in hydraulic simulations for regional and local planning projects and interpretation of computation results.

Recommended background knowledge
Fundamentals of engineering physics, mathematics and hydromechanics

Learning outcomes

Disciplinary knowledge
- concepts, theories & definitions
 - physical equations and numeric solution procedures.
- subject matter (factual data, examples)
 - base data (topography, hydrologic boundary conditions); modeling techniques and calibration; hydraulic evaluation of measures in the river valley; automated operation of barrages in rivers.
- methods & procedures
 - data preparation and visualization by the use of GIS technology (pre- and post-processing).

Professional skills
Application of one- and multi-dimensional hydrodynamic numeric river-flow models.

Personal competence
Work on small projects in a team.

Assessment specification
- **written ---**
- **oral 20 min** = module exam “Numerische Modelle”
- **other ---**

* WCH = Weekly Contact Hours