Gewässergüte
(Fresh Water Quality Assessment)

Relevance for ResEngin curriculum
Compulsory elective

Administration
Inst. f. Wasser & Gew. entw.
Siedlungswasserkforschung

Contact
stephan.fuchs@kit.edu

Term(s) offered
2nd (Summer Apr–Sept) + 3rd (Winter Oct–Mar)

Duration | Cycle
2 terms; every year

Language of instruction
German

Prerequisites
Bachelor, German language proficiency at DSH level

Module coordinator
Fuchs, Dr.-Ing. Stephan; IWG-SWW

Learning outcomes
Description see p. 2.

Literature / Course materials
Reference list see p. 3.

Basis for module(s)
Not applicable

Intersection with module(s)

- M 2 Waste and Waste Water Technologies
- M 5 Protection and Use of Riverine Systems
- M 7 Integrated Projects

Lecture courses
(training mode)

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewässerökologisches Praktikum (labcourse, excursion)</td>
<td>2.0 CP</td>
<td>1 week</td>
</tr>
<tr>
<td>Stoffstromanalysen / Wassergüte (lecture)</td>
<td>3.0 CP</td>
<td>2 WCH</td>
</tr>
<tr>
<td>SUM</td>
<td>5.0 CP</td>
<td>2 WCH + 1 week</td>
</tr>
</tbody>
</table>

Workload specification
(30 work hours → 1 CP acc. to ECTS)

- **Lecture Phase:**
 - Contact hours: 31.5 h
 - Self instruction hours: 42.0 h
 - Excursion: 24.0 h
 - Exam Preparation: 20.0 h

- **Exam Phase:**
 - Self instruction hours: 32.0 h

Module examination(s)
(mode | scope | weighting)

- “Gewässerökologisches Praktikum”
 - Report | 2,000 words | 2.0/5.0 CP

- “Gewässergüte”
 - Oral | 30 min | 3.0/5.0 CP

Lecturers
(in alphabetic order)

- Fuchs, Dr.-Ing. Stephan; IWG-SWW

Individual lecture courses
Descriptions + Recommended background knowledge see pp. 4.
Module T2c: “Fresh Water Quality Assessment” (cont.)

Module topic

Complexity of interactions between abiotic and biotic components of aquatic ecosystems and their relevance for technical systems; relevant causal mechanism operating and controlling aquatic ecosystems.

Learning outcomes

Disciplinary knowledge
- **concepts, theories & definitions**
 Functional relation in aquatic ecosystems, food and energy web, river continuum concept, sprobic index.
 Natural and anthropogenic water; nutrient and pollutant cycles; river basin, water body, EU-Water Framework Directive.
- **subject matter (factual data, examples)**
 Longitudinal profile of rivers, daily variation of physico/chemical parameters, oxygen balance of the flowing and stagnat waters, interaction of sediments and water, interstitial chemistry in sediment profiles, assessment of water quality of the river Neckar and its affluents.
 Balance of nutrient and pollutrant input into European river basins; nutrient and pollutant loads in European rivers.
- **methods & procedures**
 Water and sediment sampling, chemical analysis, biological assessment.
 Methodology for the assessment of emissions related to different kind and intensity of land use (urbanization, agricultural and industrial production); data collection and analysis and aggregation; data acquisition; monitoring stategies; instruments of material flux analysis.

Professional skills
- Application of water and sediment sampling, chemical analysis, biological assessment.
- System thinking, decision making, problem identification and problem solving.

Personal competence
- Field methods.
Module T2c: “Fresh Water Quality Assessment” (cont.)

Literature/ Course material

Module T2c

Gewässergüte
(Fresh Water Quality Assessment)

Course

Gewässerökologisches Praktikum
(Field Course on Fresh Water Quality)

<table>
<thead>
<tr>
<th>KIT lecture ID</th>
<th>xxxxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance</td>
<td>compulsory elective</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Bachelor, German proficiency (DSH level)</td>
</tr>
<tr>
<td>Term(s)</td>
<td>2nd term (summer)</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Training mode</td>
<td>Excursion, 1 week</td>
</tr>
<tr>
<td>Workload</td>
<td>2.0 CP ⇒ 60.0 h</td>
</tr>
</tbody>
</table>

Workload specification

<table>
<thead>
<tr>
<th>LECTURE PHASE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact (based on 2 WCH)</td>
<td>10.5 h</td>
</tr>
<tr>
<td>Excursion</td>
<td>24.0 h</td>
</tr>
<tr>
<td>Exam Preparation</td>
<td>20.0 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXAM PHASE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-instruction</td>
<td>5.0 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>stephan.fuchs@kit.edu</td>
</tr>
</tbody>
</table>

Lecturer(s)

FUCHS, Dr.-Ing. Stephan; IWG-SWW

Course topic

Complex interaction of abiotic and biotic components of aquatic ecosystems and their relevance for technical systems; relevant causal mechanism operating and controlling aquatic ecosystems.

Recommended background knowledge

Fundamentals of biology and chemistry

Learning outcomes

Disciplinary knowledge

- **concepts, theories & definitions**

 functional relation in aquatic ecosystems, food and energy web, river continuum concept, sprobic index.

- **subject matter (factual data, examples)**

 longitudinal profile of rivers, daily variation of physico/chemical parameters, oxygen balance of the flowing and stagnant waters, interaction of sediments and water, interstitial chemistry in sediment profiles, assessment of water quality of the river Neckar and its affluents.

- **methods & procedures**

 n.a.

Professional skills

Application of water and sediment sampling, chemical analysis, biological assessment.

Personal competence

Field methods.

Assessment specification

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>written</td>
<td>---</td>
</tr>
<tr>
<td>oral</td>
<td>---</td>
</tr>
<tr>
<td>other</td>
<td>group report = partial module exam “Gewässerökologisches Praktikum” (2.000 words)</td>
</tr>
</tbody>
</table>

* WCH = Weekly Contact Hours
Course

Module T2c

Gewässergüte
(Fresh Water Quality Assessment)

Course

Stoffstromanalysen / Wassergütewirtschaft
(Material Flux Analysis in River Basins)

<table>
<thead>
<tr>
<th>KIT lecture ID</th>
<th>Workload specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxxx</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevance</th>
<th>compulsory elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites</td>
<td>Bachelor, German proficiency (DSH level)</td>
</tr>
<tr>
<td>Term(s)</td>
<td>3rd term (winter)</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Training mode</td>
<td>Lecture, 2 WCH</td>
</tr>
<tr>
<td>Workload</td>
<td>3.0 CP => 90.0 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LECTURE PHASE</th>
<th>EXAM PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact (based on 2 WCH)</td>
<td>Self instruction</td>
</tr>
<tr>
<td>21.0 h</td>
<td>42.0 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>stephan.fuchs@kit.edu</td>
</tr>
</tbody>
</table>

Lecturer(s)

FUCHS, Dr.-Ing. Stephan; IWK-SWW

Course topic

Stress on water quantity and quality due to urbanization and more intensive agricultural and industrial production in developing countries.

Recommended background knowledge

Fundamentals of Biology, Chemistry and Hydrology

Learning outcomes

Disciplinary knowledge

- concepts, theories & definitions
 natural and anthropogenic water; nutrient and pollutant cycles; river basin, water body, EU-Water Framework Directive.

- subject matter (factual data, examples)
 balance of nutrient and pollutant input into European river basins; nutrient and pollutant loads in European rivers.

- methods & procedures
 methodology for the assessment of emissions related to different kind and intensity of land use (urbanization, agricultural and industrial production); data collection and analysis and aggregation; data acquisition; monitoring strategies; instruments of material flux analysis.

Professional skills

System thinking, decision making, problem identification and problem solving.

Personal competence

n.a.

Assessment specification

- written ---
- oral 30 min = partial module exam „Gewässergüte”
- other ---

* WCH = Weekly Contact Hours