Module Handbook
Civil Engineering Bachelor 2017 (Bachelor of Science (B.Sc.))
SPO 2017
Winter term 2019/20
Date: 17.10.2019
# Table Of Contents

1. Preface .......................................................................................................................... 4

2. Curriculum .................................................................................................................... 5
   2.1. Objectives of the bachelor degree program ......................................................... 5
   2.2. Structure of the bachelor degree program ............................................................. 5
   2.3. Selection and completion of a module .................................................................... 9
   2.4. Repetition of examinations, deadlines .................................................................. 10
   2.5. Students with disability or chronic disease............................................................ 10
   2.6. Crediting and recognition of obtained accomplishments otherwise ...................... 10
   2.7. Bachelor's Thesis .................................................................................................. 10
   2.8. Interdisciplinary Qualifications, Internship ............................................................ 11
   2.9. Additional accomplishments, prior master's transfer account ............................... 11

3. Further information ....................................................................................................... 12
   3.1. About the module handbook . ............................................................................... 12
   3.2. About module examinations, examination committee . ........................................ 12
   3.3. About changes in module offer . ........................................................................... 12
   3.4. Contact persons ................................................................................................. 13

4. Current changes ............................................................................................................. 14

5. Modules ......................................................................................................................... 15
   5.1. Structural Analysis [bauBFP1-BSTAT] - M-BGU-101752 ...................................... 15
   5.2. Basics of Reinforced Concrete [bauBFP2-KSTR.A] - M-BGU-103696 ................. 17
   5.3. Basics in Steel and Timber Structures [bauBFP3-KSTR.B] - M-BGU-103697 ....... 18
   5.4. Water and Environment [bauBFP4-WASSER] - M-BGU-103405 ......................... 20
   5.5. Mobility and Infrastructure [bauBFP5-MOBIN] - M-BGU-103486 ....................... 22
   5.6. Technology and Management in Construction [bauBFP6-TMB] - M-BGU-101754 ... 24
   5.7. Geotechnical Engineering [bauBFP7-GEOING] - M-BGU-103698 ....................... 26
   5.9. Statics of Rigid Bodies [bauBGP01-TM1] - M-BGU-101745 ................................... 30
   5.11. Dynamics [bauBGP03-TM3] - M-BGU-101747 ..................................................... 34
   5.22. Interdisciplinary Qualifications [bauBW0-UEQUAL] - M-BGU-103854 ............. 50
   5.23. Further Examinations [bauBZL] - M-BGU-103857 .......................................... 51

6. Courses ......................................................................................................................... 52
   6.1. Analysis and Linear Algebra - Exam - T-MATH-103325 .................................... 52
   6.3. Bachelor Thesis - T-BGU-107601 ....................................................................... 55
   6.4. Basics in Steel Structures - T-BGU-107462 ......................................................... 56
   6.5. Basics in Timber Structures - T-BGU-107463 ..................................................... 57
   6.6. Basics of Reinforced Concrete I - T-BGU-103389 .............................................. 58
   6.7. Basics of Reinforced Concrete II - T-BGU-103390 .............................................. 59
   6.9. Building Physics - T-BGU-103384 ......................................................................... 61
   6.11. Computer Aided Design (CAD) - T-BGU-107473 ............................................ 63
   6.12. Differential Equations - Exam - T-MATH-103323 ............................................ 64
   6.13. Dynamics - T-BGU-103379 .............................................................................. 66
   6.15. Environmental Physics / Energy - T-BGU-103401 .......................................... 68
   6.16. Examination Prerequisite Hydromechanics - T-BGU-107586 ......................... 69
   6.17. Geology in Civil Engineering - T-BGU-103395 ............................................... 70

Civil Engineering Bachelor 2017 (Bachelor of Science (B.Sc.))
Module Handbook as of 17.10.2019
### 7. Appendix: Curriculum by example

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.18</td>
<td>Geotechnical Design - T-BGU-107468</td>
<td>71</td>
</tr>
<tr>
<td>6.19</td>
<td>Geotechnical Engineering - T-BGU-107465</td>
<td>72</td>
</tr>
<tr>
<td>6.20</td>
<td>Hydromechanics - T-BGU-103380</td>
<td>74</td>
</tr>
<tr>
<td>6.21</td>
<td>Integration and Multivariate Analysis - Exam - T-MATH-103324</td>
<td>75</td>
</tr>
<tr>
<td>6.22</td>
<td>Introduction to Computer Programming I - T-BGU-103396</td>
<td>77</td>
</tr>
<tr>
<td>6.23</td>
<td>Introduction to Computer Programming II - T-BGU-103398</td>
<td>78</td>
</tr>
<tr>
<td>6.24</td>
<td>Introduction to Continuum Mechanics (not graded) - T-BGU-107466</td>
<td>79</td>
</tr>
<tr>
<td>6.25</td>
<td>Laboratory Course - T-BGU-103403</td>
<td>80</td>
</tr>
<tr>
<td>6.26</td>
<td>Life Cycle Management - T-BGU-107470</td>
<td>81</td>
</tr>
<tr>
<td>6.27</td>
<td>Mobility and Infrastructure - T-BGU-101791</td>
<td>82</td>
</tr>
<tr>
<td>6.28</td>
<td>Partial Differential Equations - Exam - T-MATH-103326</td>
<td>83</td>
</tr>
<tr>
<td>6.29</td>
<td>Physical Modelling in Hydraulic Engineering - T-BGU-107467</td>
<td>84</td>
</tr>
<tr>
<td>6.30</td>
<td>Planning Methodology - T-BGU-107450</td>
<td>85</td>
</tr>
<tr>
<td>6.31</td>
<td>Programming Exercises Introduction to Computer Programming I - T-BGU-103397</td>
<td>86</td>
</tr>
<tr>
<td>6.32</td>
<td>Programming Exercises Introduction to Computer Programming II - T-BGU-103399</td>
<td>87</td>
</tr>
<tr>
<td>6.33</td>
<td>Project Management (not graded) - T-BGU-107449</td>
<td>88</td>
</tr>
<tr>
<td>6.34</td>
<td>Project 'Plan, Design, Engineering' - T-BGU-107469</td>
<td>89</td>
</tr>
<tr>
<td>6.35</td>
<td>Statics of Rigid Bodies - T-BGU-103377</td>
<td>90</td>
</tr>
<tr>
<td>6.36</td>
<td>Strength of Materials - T-BGU-103378</td>
<td>91</td>
</tr>
<tr>
<td>6.37</td>
<td>Structural Analysis I - T-BGU-103387</td>
<td>92</td>
</tr>
<tr>
<td>6.38</td>
<td>Structural Analysis II - T-BGU-103388</td>
<td>93</td>
</tr>
<tr>
<td>6.39</td>
<td>Structural Design - T-BGU-103386</td>
<td>94</td>
</tr>
<tr>
<td>6.40</td>
<td>Surveying for Civil Engineers and Geophysicists (ungraded) - T-BGU-101683</td>
<td>95</td>
</tr>
<tr>
<td>6.41</td>
<td>Technical Illustrations - T-BGU-103402</td>
<td>96</td>
</tr>
<tr>
<td>6.42</td>
<td>Technology and Management in Construction - T-BGU-103392</td>
<td>97</td>
</tr>
<tr>
<td>6.43</td>
<td>Term Papers Highway Engineering - T-BGU-106833</td>
<td>98</td>
</tr>
<tr>
<td>6.44</td>
<td>Term Papers Transportation - T-BGU-106832</td>
<td>99</td>
</tr>
<tr>
<td>6.45</td>
<td>Theory of Building Materials - T-BGU-103382</td>
<td>100</td>
</tr>
<tr>
<td>6.46</td>
<td>Water and Environment - T-BGU-106800</td>
<td>101</td>
</tr>
<tr>
<td>6.47</td>
<td>Wildcard - T-BGU-107788</td>
<td>102</td>
</tr>
</tbody>
</table>

---

The module Handbook as of 17.10.2019
This handbook version is for informational use only. For legally binding information please refer to the german version of the handbook.

1 Preface

The module handbook is the document in which important additional information about the studies is described. The general rules from the examination regulation (s. https://www.sle.kit.edu/imstudium/bachelor-bauingenieurwesen.php, in German) and the structure of the program are specified by the curriculum (Chapt. 1). The main function of the Module Handbook is the compilation of the module descriptions (Chapt. 5) and the learning controls (Chapt. 6).

In addition to the module handbook information about the execution of the single courses is collected within the course catalog (online). Information about the examinations is provided by the self-service function for students. This information is also announced by postings and web pages of the institutes.

Publisher:
KIT-Department of Civil Engineering, Geo and Environmental Sciences
Karlsruhe Institute of Technology (KIT)
76128 Karlsruhe

Photographer:
Martin Fenchel

Contact:
ulf.mohrlok@kit.edu
2 Curriculum

In this section 'Curriculum' rules in addition to the examination regulation (ER/SPO) are described. This can be found on

https://www.sie.kit.edu/imstudium/bachelor-bauingenieurwesen.php
(Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang
Bauingenieurwesen, vom 12.01.2017, in German)

Here, the structure of the degree program is presented and explained, for instance the assignment of the modules to the single subjects is specified.

2.1 Objectives of the bachelor degree program

The bachelor degree program Civil Engineering provides a fundamental and research-oriented qualification in all professional fields of civil engineering and simultaneously the scientific qualification for starting a master degree program in civil engineering or a related filed. The focus of the qualification is on the technical and scientific basics and methods in all fields of civil engineering. Further essential parts of the qualification are competences in team work and communication.

The graduates are able to extend their acquired basic knowledge and their methodological competences in engineering and natural sciences by targeted and effective inquiries and to apply them in line with demand. Thus, they can deepen themselves in any field of the civil engineering profession. With this, they are able to plan, to design, to construct, to manage and to maintain all kinds of buildings, facilities and infrastructure our society needs.

The graduates become acquainted with technical problem almost by themselves. They think holistic and bring thus in line social, ecological and economic issues for generating a solution. Their strength is on their technical knowhow, which is supplemented by their acquired team and communication skills.

2.2 Structure of the bachelor degree program

The bachelor degree program Civil Engineering comprises 180 credit points (CP) and is structured in the two phases Basic Studies and Basic Subject Studies (see overview p. 6, comp. ER/SPO § 3 par. 3). These are further subdivided into subjects, modules and courses.

All subjects in the Basic Studies as well as in the Basic Subject Studies are compulsory subjects. Respective modules are assigned with every subject (e.g. Mathematics or Mechanics). The extent of a module is described by credit points, which are credited after successfully passing a module. The descriptions of all modules are included in this module handbook.

In every module one or more interrelated courses are offered. Every module will be completed by one or more learning controls. Learning controls are either graded (examinations) or not graded (not graded accomplishments).

Below, the components of the Basic Studies and Basic Subject Studies are explained. In the additional studies further learning controls can be taken. In the tables (overview p. 7 - 9) the order of the modules and the associated examinations are presented. In the appendix, a curriculum by example illustrates the completion of the studies within the standard period of study. The selected courses and learning controls in the modules 'Basics in Engineering II' and 'Supplements in Engineering' are not any recommendation.
### 1. Sem. (WS)  
#### Basic Studies

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>28 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>modules in subject Mechanics:</td>
<td></td>
</tr>
<tr>
<td>Statics of Rigid Bodies</td>
<td></td>
</tr>
<tr>
<td>Strength of Materials</td>
<td></td>
</tr>
<tr>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>Hydromechanics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>25 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>modules in subject Mathematics:</td>
<td></td>
</tr>
<tr>
<td>Analysis and Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>Integration and Multivariate Analysis</td>
<td></td>
</tr>
<tr>
<td>Applied Statistics</td>
<td></td>
</tr>
<tr>
<td>Differential Equations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>21 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>modules in subject Building Materials and Structural Design:</td>
<td></td>
</tr>
<tr>
<td>Building Materials</td>
<td></td>
</tr>
<tr>
<td>Structural Design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>10 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>module in subject Mechanics:</td>
<td></td>
</tr>
<tr>
<td>Structural Analysis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>12 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>module in subject Mobility and Infrastructure:</td>
<td></td>
</tr>
<tr>
<td>Mobility and Infrastructure</td>
<td></td>
</tr>
</tbody>
</table>

### 2. Sem. (SS)  
#### Basic Subject Studies

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>14 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>modules in subject Structural Engineering:</td>
<td></td>
</tr>
<tr>
<td>Basics of Reinforced Concrete</td>
<td></td>
</tr>
<tr>
<td>Basics in Steel and Timber Structures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>11 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>module in subject Technology and Management in Construction Operation:</td>
<td></td>
</tr>
<tr>
<td>Technology and Management in Construction Operation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>12 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>module in subject Water and Environment:</td>
<td></td>
</tr>
<tr>
<td>Water and Environment</td>
<td></td>
</tr>
</tbody>
</table>

### 3. Sem. (WS)  
#### Basic Studies

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>11 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>module in subject Geotechnical Engineering:</td>
<td></td>
</tr>
<tr>
<td>Geotechnical Engineering</td>
<td></td>
</tr>
</tbody>
</table>

### 4. Sem. (SS)  
#### Basic Subject Studies

<table>
<thead>
<tr>
<th>Technical Compulsory Subjects</th>
<th>8 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>module in subject Supplements in Engineering:</td>
<td></td>
</tr>
<tr>
<td>Supplements in Engineering (selection)</td>
<td></td>
</tr>
</tbody>
</table>

### 5. Sem. (WS)  
#### Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Interdisciplinary Qualifications</th>
<th>6 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisciplinary Qualifications (selected from the offer of HoC, ZAK)</td>
<td></td>
</tr>
</tbody>
</table>

### 6. Sem. (SS)  
#### Bachelor Thesis

<table>
<thead>
<tr>
<th>Bachelor Thesis</th>
<th>12 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration of preparation:</td>
<td>3 months</td>
</tr>
<tr>
<td>completion by presentation</td>
<td></td>
</tr>
</tbody>
</table>

### Additional Studies

#### Additional Accomplishments / Additional Modules:

- freely selectable out of the entire course offer of KIT

#### Prior Master’s Transfer Account:

- max. 30 CP
- modules from a consecutive master degree program

---

**Legend:**

- **WS:** winter semester
- **SS:** summer semester
- **CP:** credit points

---

Civil Engineering Bachelor 2017 (Bachelor of Science (B.Sc.))  
Module Handbook as of 17.10.2019
Basic Studies

The Basic Studies define the semesters 1 - 3 of the standard period of study (comp. ER/SPO § 20). It comprises 90 CP in total, 84 CP of them in the technical compulsory subjects. Technical compulsory subjects in the Basic Studies are the subjects Mechanics (28 CP, 4 modules), Mathematics (25 CP, 4 modules), Building Materials and Structural Design (21 CP, 2 modules), as well as Basics in Engineering (10 CP, 2 modules). All modules are well defined with the associated learning controls in the subjects Mechanics, Mathematics as well as Building Materials and Structural Design. All learning controls in these subjects are graded.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module [Code (baui)]</th>
<th>Course</th>
<th>Type</th>
<th>1. semester</th>
<th>2. semester</th>
<th>3. semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HpW</td>
<td>LC</td>
<td>CP</td>
<td>HpW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanics</td>
<td>Statics of Rigid Bodies [BGP01]</td>
<td>Statics of Rigid Bodies</td>
<td>L/E</td>
<td>3/2</td>
<td>wE</td>
<td>OE</td>
</tr>
<tr>
<td>Dynamics [BGP03]</td>
<td>Dynamics</td>
<td>L/E</td>
<td>2/2</td>
<td>wE</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Hydromechanics [BGP04]</td>
<td>Hydromechanics</td>
<td>L/E</td>
<td>2/2</td>
<td>nA 1)</td>
<td>wE 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>Analysis and Linear Algebra [BGP05]</td>
<td>Analysis and Linear Algebra</td>
<td>L/E</td>
<td>4/2</td>
<td>wE</td>
<td>9</td>
</tr>
<tr>
<td>Integration and Multivariate Analysis [BGP06]</td>
<td>Integration and Multivariate Analysis</td>
<td>L/E</td>
<td>4/2</td>
<td>wE</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Differential Equations</td>
<td>Differential Equations [BGP08]</td>
<td>Differential Equations</td>
<td>L/E</td>
<td>2/1</td>
<td>wE</td>
<td>4</td>
</tr>
<tr>
<td>Building Materials</td>
<td>Building Materials</td>
<td>L/E</td>
<td>4/2</td>
<td>wE</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Structural Design [BGP10]</td>
<td>Building Physics</td>
<td>L/E</td>
<td>1/1</td>
<td>wE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural Design</td>
<td>L/E</td>
<td>2/2</td>
<td>wE</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geology in Civil Engineering</td>
<td>L/E</td>
<td>2</td>
<td>nA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Com-</td>
<td>L/E</td>
<td>1/1</td>
<td>nA 1)</td>
<td>nA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>puter Programming I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics in Engineering II</td>
<td>selection (4 CP have to be taken)</td>
<td>2-4</td>
<td>SL</td>
<td>2-4</td>
<td>0-2</td>
<td>nA</td>
</tr>
<tr>
<td>Interdisciplinary Qualifications</td>
<td>selection from the offer of HoC and ZAK</td>
<td>2</td>
<td>nA</td>
<td>3</td>
<td>2</td>
<td>nA</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>19-21</td>
<td>2E + 5-6nA</td>
<td>25-27</td>
<td>22-24</td>
</tr>
</tbody>
</table>

In the subject Basics in Engineering, the components of the module Basics in Engineering I (6 CP) are well defined as well, the associated learning controls are not graded. Whereas, the components of the module Basics in Engineering II (4 CP) can be selected from the available offer (see below). The associated learning controls are also not graded.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module [Code (baui)]</th>
<th>Course</th>
<th>Type</th>
<th>1. semester</th>
<th>2. semester</th>
<th>3. semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HpW</td>
<td>LC</td>
<td>CP</td>
<td>HpW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics in Engineering</td>
<td>Basics in Engineering II [BGW8]</td>
<td>Planning Methodology</td>
<td>L/E</td>
<td>1/1</td>
<td>nA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Chemistry of Building Materials</td>
<td>L</td>
<td>2</td>
<td>nA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Physics / Energy</td>
<td>L</td>
<td>2</td>
<td>nA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Illustrations</td>
<td>L/E</td>
<td>2</td>
<td>nA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory Course</td>
<td>P</td>
<td>2</td>
<td>nA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surveying</td>
<td>L/E</td>
<td>1/1</td>
<td>nA</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
The Orientation Examinations are the module examinations Statics of Rigid Bodies (subject Mechanics) as well as the partial examinations Theory of Building Materials and Building Physics (both subject Building Materials and Structural Design). These have to be taken until the end of the second semester and to be passed until the end of the third semester.

Additionally in the Basic Studies, 6 CP has to be credited obligatorily as Interdisciplinary Qualifications. For that, courses can be selected in extent of 6 CP in total basically from the respective course catalog on key competences offered by the House of Competence (HoC) or the Centre for Cultural and General Studies (ZAK). Also, interdisciplinary qualifications acquired during a voluntarily taken professional internship can be credited with CPs by a respective attestation.

### Basic Subject Studies

The Basic Subject Studies define the semesters 4 - 6 of the standard period of study (comp. ER/SPO § 20). They comprise 90 CP in total, 78 CP of them in the technical compulsory subjects. Technical compulsory subjects in the Basic Subject Studies are the subjects Structural Analysis (10 CP), Structural Engineering (14 CP), Water and Environment (12 CP), Mobility and Infrastructure (12 CP), Technology and Management in Construction (11 CP), Geotechnical Engineering (11 CP) as well as Supplements in Engineering (8 CP). These subjects consists of identically named modules except the module Structural Engineering, which consists of the two modules Basics of Reinforced Concrete and Basics in Steel and Timber Structures. All learning controls in these modules are well defined and graded with exception of the module Supplements in Engineering.

### Module Handbook as of 17.10.2019

**Civil Engineering Bachelor 2017 (Bachelor of Science (B.Sc.))**

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module [Code (baui)]</th>
<th>Course</th>
<th>Type</th>
<th>4. semester</th>
<th>5. semester</th>
<th>6. semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HpW LC CP</td>
<td>HpW LC CP</td>
<td>HpW LC CP</td>
</tr>
<tr>
<td>Structural Analysis</td>
<td>Structural Analysis</td>
<td>Structural Analysis I</td>
<td>L/E</td>
<td>2/2 wE 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structural Analysis II</td>
<td>L/E</td>
<td>2/2 wE 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>Basics of Reinforced</td>
<td>Basics of Reinforced Concrete I</td>
<td>L/E</td>
<td>2/1 wE 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete [BFP2]</td>
<td>Basics of Reinforced Concrete II</td>
<td>L/E</td>
<td></td>
<td>2 wE 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basics in Steel Structures</td>
<td>L/E</td>
<td>2/1 wE 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basics in Timber Structures</td>
<td>L/E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[BFP4]</td>
<td>Hydrology</td>
<td>L/E</td>
<td>2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sanitary Environmental Engineering</td>
<td>L/E</td>
<td></td>
<td></td>
<td>2/1</td>
</tr>
<tr>
<td>Mobility and Infrastructure</td>
<td>Mobility and Infrastructure</td>
<td>Spatial Planning and Planing Law</td>
<td>L/E</td>
<td>2/1 nA (1)</td>
<td>nA (1)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>[BFP5]</td>
<td>Transportation</td>
<td>L/E</td>
<td>2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design Basics in Highway Engineering</td>
<td>L/E</td>
<td>2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology and Management in Construction</td>
<td>Technology and Management in Construction</td>
<td>Construction Technology</td>
<td>L/E</td>
<td>3/1 wE 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[BFP6]</td>
<td>Economics in Construction Operation</td>
<td>L/E</td>
<td>2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Facility and Real Estate Management</td>
<td>L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[BFP7]</td>
<td>Basics in Foundation Engineering</td>
<td>L/E</td>
<td></td>
<td>2/2</td>
<td></td>
</tr>
<tr>
<td>Supplements in Engineering</td>
<td>Supplements in Engineering</td>
<td>[BFW11] selection</td>
<td>0-4</td>
<td>nA 0-4</td>
<td>0-2 nA 0-2</td>
<td>2-8 nA 2-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8 CP have to be taken)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor's Thesis</td>
<td>Module Bachelor's Thesis</td>
<td>[BSC]</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

| Total                                       |                      |                                             |      | 25-29 3E + | 31-35 23-25 | 5E + 0-1nA 29-31 7-13 2E + 1-4nA | 24-30 |
In the module Supplements in Engineering, the components can be selected from the available offer (see below). The learning controls to all selectable courses are also not graded.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module [Code (bawi)]</th>
<th>Course</th>
<th>Type</th>
<th>4. semester</th>
<th>5. semester</th>
<th>6. semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Introduction to Continuum Mechanics</td>
<td>L</td>
<td></td>
<td>2</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Modelling in River Engineering</td>
<td>L</td>
<td></td>
<td>2</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geotechnical Design</td>
<td>L</td>
<td></td>
<td>2</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project 'Plan, Design, Engineering'</td>
<td>Pj</td>
<td></td>
<td>2</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Life Cycle Management</td>
<td>L/E</td>
<td></td>
<td>2</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Hydrology</td>
<td>L/E</td>
<td></td>
<td>2</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Computer Programming II</td>
<td>L/E</td>
<td>1/1</td>
<td>nA 1)</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Aided Design (CAD)</td>
<td>L/E</td>
<td></td>
<td>2</td>
<td>nA</td>
</tr>
</tbody>
</table>

The admission to the examinations in the subjects Structural Engineering, Water and Environment and Geotechnical Engineering requires, that the module examinations in the subjects Mechanics and Mathematics as well the module examination Structural Design are all passed except two of them.

Furthermore, the Bachelor's Thesis (12 CP) is part of the Basic Subject Studies. The admission to the Bachelor's Thesis requires, that the student has completed all modules of the Basic Studies (90 CP) and modules in extent of 35 CP from the Basic Subject Studies.

Additional Studies

Beyond that, voluntary additional accomplishments can be taken in extent of 30 CP at maximum from the entire offer of KIT (comp. ER/SPO § 15). If by the taken additional accomplishment a module is completed it can be included in the bachelor degree certificate as additional module on request by the student.

In addition, modules can be taken in extent of 30 CP at maximum from a consecutive master degree program (e.g. 5 modules of the master degree program Civil Engineering) as prior master's examinations (comp. ER/SPO § 15), if the student completed modules in extent of more than 120 CP. These can be credited in a future master degree program. With this, students are able to customize the interdisciplinary studies to the personal needs, interests and professional perspectives in terms of content and time as well.

explanations to the tables:

general:  
<table>
<thead>
<tr>
<th>LC</th>
<th>CP</th>
<th>HpW</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning control</td>
<td>credit point</td>
<td>hours per week</td>
</tr>
</tbody>
</table>

type of course:  
| L | P | Pj |
| lecture | practical training | study project |

type of learning control:  
| wE | OE | nA 1) |
| written examination | orientation examination | not graded accomplishment | not graded accomplishment | as examination prerequisite |

2.3 Selection and completion of a module

Every module and every examination has to be taken not more than once (comp. ER/SPO § 7 par. 5). Since all modules in the degree program are compulsory modules, there exists no option to select on the level of modules. Within the modules with selectable learning controls the student makes a decision at the time when registering to the respective learning control (comp. SPO § 5 par. 2). The student can revoke this mandatory selection only by canceling the registration to the learning control in time. After taking the learning control the selected learning control can be canceled and replaced by another one only by request to the examination committee.

A module is completed when all learning controls assigned to the module are passed, i.e. either evaluated as examination with grade '4.0' or as not graded accomplishment with 'passed'.
2.4 Repetition of examinations, deadlines

Principally, a failed examination can be repeated once, latest by the end of the examination period of the next but one semester to this examination (comp. ER/SPO § 8). If failing a written repeat examination an oral repeat examination can be taken. This is part of the overall repeat examination and will not be evaluated independently. After the oral repeat examination the overall grade of the repeat examination will be determined, either grade 4.0 (passed) or grade 5.0 (finally failed).

If the repeat examination (including an oral repeat examination) will be failed as well, the examination claim is lost. A potential request for a second repetition has to be made without delay after loosing the examination claim. Requests for a second repetition of an examination require the approval of the examination committee. A counseling interview is strongly recommended.

Orientation Examinations are the examinations in the module Statics of Rigid Bodies as well as the partial modules Theory of Building Materials and Building Physics (comp. ER/SPO § 8). These have to be taken by the end of the examination period of the second subject-related semester. Those who do not pass the Orientation Examinations including possible repeated examinations before the end of the examination period of the third subject-related semester will lose the examination claim in Civil Engineering. A second repetition of the Orientation Examinations is impossible.

A possible request for an extension of deadline has to be submitted to the examination committee. This request is also decided by the examination committee.

Further information is available in the examination regulation (ER/SPO, http://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2017_AB_010.pdf) and from Bachelor Examination Committee or the “Fachschaft” (student council).

2.5 Students with disability or chronic disease

Students with disability or chronic disease have the opportunity to get preferred access to participation limited courses, to adapt the order of taking certain courses to their requirements, or to take examinations of single modules in individually arranged form or period (”Nachteilsausgleich“ - reconciliation of disadvantage, comp. ER/SPO § 13). The student has to present the respective attests.

The student submits an informal request with the respective attests to the examination committee. The examination committee defines in agreement with the examiner the details for the respective examination and informs the student in time.

2.6 Crediting and recognition of obtained accomplishments otherwise

Otherwise obtained accomplishments are accomplishments can by recognized generally under the conditions of the ER/SPO § 19. The recognition has to be made with the respective recognition form of the bachelor examination committee (http://www.ifv.kit.edu/pab.php).

If the accomplishments are mainly identical with modules from the curriculum (name, objectives, content) this is confirmed on the form by the respective lecturer.

If the accomplishments are not identical with modules from the curriculum they can be recognized as well, if the obtained competences contribute to achieve the qualification goals of the study program. The recognition and crediting which parts of the curriculum can be replaced is made by the bachelor examination committee.

The recognition of accomplishments obtained outside of the higher education system is made also with the respective recognition form of the bachelor examination committee (http://www.ifv.kit.edu/pab.php). A recognition is possible if the obtained competences contribute to achieve the qualification goals of the study program. The examination committee examines in which extent the obtained knowledge and skills can be recognized and which parts of the higher education study can be replaced by them. It is allowed to replace not more than 50 % of the higher education study.

The recognition form has to be submitted to the bachelor examination committee which transfers it for booking the accomplishments.

2.7 Bachelor's Thesis

The Bachelor's Thesis has to be prepared usually in the third your of studying (comp. also ER/SPO § 14). The topic of the bachelor thesis has to be assigned by a professor, a leading scientists according to § 14 par. 3 no. 1 KITG or an academic assistant given the examining permission of the Department of Civil Engineering, Geo- and Environmental Sciences (comp. ER/ SPO § 14 par. 2). The outside of the students may be respected when formulating the topic. In case that the bachelor thesis shall be prepared outside of KIT the leaflet 'Merkblatt - Externe Abschlussarbeiten' (http://www.haa.kit.edu/downloads/KIT_ALLGEMEIN_Merkblatt_Externe_Abschlussarbeiten.pdf, in German) has to be considered.

Those can be admitted to the bachelor's thesis who has passed successfully all modules of the Basic Studies, 90 CP, and modules of the Basic Subject Studies in extent of 35 CP. The supervisor initiates that the bachelor's thesis will be uploaded to the campus management system. After notification via e-mail the bachelor's thesis has to be registered online at the portal Campus Management for Students. The admission is made after verification of the required prerequisites and eventual further conditions. These steps have to be completed before starting the thesis (date of beginning).

The duration of preparation is three months. The bachelor thesis can be written also in English. It has to be completed by a presentation that is considered in the grading within one month after submission.
2.8 Interdisciplinary Qualifications, Internship

In order to obtain credit points (6 CP) for the module **Interdisciplinary Qualifications** (comp. also ER/SPO § 16) usually respective courses are to be selected from the offer on key competences of the KIT House of Competence (HoC) or the Centre for Cultural and General Studies (ZAK). In special cases the Examination Committee Master can accept further suitable courses as interdisciplinary qualifications which are not included in the offers of HoC and ZAK as mentioned above, for instance language courses of the 'Sprachenzentrum' (SpZ, center of language studies).

An **Internship** is strongly recommended even if it not included in the curriculum. It offers important insights in the professional practice and there can be obtained interdisciplinary qualifications, among other things with regard to capacity in communication and teamwork. The Internship can be completed in companies of the construction industry or in consultant companies, which are in charge of planning, construction or maintenance of construction activities. The students shall become acquainted with and reflect the internal process management and the cooperation between the respective contracting parties. If the duration of the internship is at least 6 weeks the crediting of CPs is possible in the context of the module Interdisciplinary Qualifications. The proof is made by an internship report, that has to contain the carried out work as well as the explanation of the obtained interdisciplinary qualifications. The 'Praktikumsamt' (internship office) defines the extent of the credited CPs on base of the submitted proof. At maximum a recognition up to 3 CP is possible. A consultation about the recognition of an internship is recommended in advance.

The module Interdisciplinary Qualifications is completed without grade. After consultation with the lecturer a grade can be reported but is not included in the calculation of the grade of the module.

2.9 Additional accomplishments, prior master's transfer account

An **additional accomplishment** is a voluntarily taken examination, which is not considered in the overall grade (comp. ER/SPO § 15). In total, additional accomplishments can be taken in extent of 30 CP at maximum from the entire offer of KIT. An additional accomplishment has to be admitted as such by the Study Program Service of the department ('Studiengangservice Bau-Geo-Umwelt') with the examination form available there. The examination form has to be delivered to the examiner as registration and for the transfer of the obtained grade within the registration period.

As far as not graded accomplishments not taken from the modules **Basics in Engineering II** or **Supplements in Engineering** are selected as additional accomplishments these can be registered online as 'Further Examinations'. By request to the examination committee the assignment can be changed subsequently.

All taken additional accomplishments are listed in the transcript of records. If a module is completed, as described in the study program in which it is offered, this module can be included in the bachelor degree certificate as additional modules on request by the student.

An internship (see chapt. 2.8) of at minimum 4 weeks and at maximum 8 weeks duration can also be recognized as additional accomplishment with 10 CP at maximum. A description of interdisciplinary qualifications is not required.

Furthermore, up to 30 CP, or five modules respectively, from the master degree programs Civil Engineering, Engineering Structures, Mobility and Infrastructure or Water Science and Engineering can be selected on the **prior master's transfer account** (comp. ER/SPO § 15a), as far as already modules in extent of 120 credit points are completed within the bachelor studies. This shall enable an easier transition to the consecutive master studies out of the standard period of study. The admission to a prior master's examination is made by the Study Program Service of the department ('Studiengangservice Bau-Geo-Umwelt') with the examination form available there. This form has to be delivered within the registration period to the examiner as registration and for the transfer of the grade.

It has to considered that a prior master's examination is credited within the bachelor studies and will be transferred to the master studies only by request and not automatically. A template for this request can be downloaded from the webpage [http://www.sle.kit.edu/imstudium/antraege-formulare.php](http://www.sle.kit.edu/imstudium/antraege-formulare.php). The request of transfer to the master studies has to be submitted to the Study Program Service of the department ('Studiengangservice Bau-Geo-Umwelt') at the beginning of the master studies, i.e. the first semester.
3 Further information

3.1 About the module handbook . . .

The module handbook is the relevant document in which the structure of the program is described and therefore it provides assistance for the orientation during the study. It describes the modules belonging to the program and contains information about:

- the extent of the modules (in CP),
- the placement of the module in the course of study,
- the learning outcomes of the modules,
- type of assessment and examinations,
- the computation of the grade of the module,
- the interdependencies of the modules, required prerequisites respectively, and
- the associated courses (HpW).

In addition to the module handbook the course catalog and the institutes (web pages) provide important information. These are updated every semester concerning variable course details (e.g. time and location of the course) as well as short-term modifications.

3.2 About module examinations, examination committee . . .

The module examinations can be taken as a general examination or as several partial examinations. If the module examination is offered as a general examination, the entire content of the module will be reviewed in a single examination. If the module examination consists of partial examinations, the content of each course will be reviewed in corresponding partial examinations. Then the module examination can be taken over several semesters. Also not graded accomplishments can be part of the module examination, e.g. as examination prerequisites.

The registration to examinations, also to not graded accomplishments and examination prerequisites, takes place online via the portal Campus Management for Students, https://campus.studium.kit.edu. The following functions can be accessed there after login:

- register to and deregister from examinations
- retrieve examination results
- print transcript of records

A successful online registration covers the admission to the examination. A confirmation for this is provided by the portal Campus Management for Students and can serve as proof for a made registration in case of doubts. If there occurs a problem with an attempt of an online registration the Study Program Service of the department ("Studienangungsstelle Bau-Geo-Umwelt") or the bachelor examination committee has to be informed as soon as possible in addition to the examiner.

The Examination Committee Bachelor (http://www.ifv.kit.edu/pab.php) is responsible for all legal questions in the context of examinations. For instance, all requests on second repetition, extension of deadlines or recognitions are submitted to this. It decides about their approval.

3.3 About changes in module offer . . .

The offer of modules changes in the course of the semesters. During the bachelor studies no changes are expected in general. However, courses and the assigned learning controls or the module examinations may change. If possible, such changes are announced in the module handbook with sufficient time in advance, at latest at the beginning of the semester as from they are valid.

Usually, it is valid that students started a module (s. selection and completion of a module) can complete this in that form as started. The respective learning controls are provided onwards over a certain time period usually at least one semester after time of change. In general, a consultation with the examiner is recommended in such a case.
3.4 Contact persons

Dean of Study Affairs:
Prof. Dr. Peter Vortisch
Institute for Transport Studies, Bldg. 10.30, R. 305
consultation: on appointment
Phone: 0721/608-42255
Email: peter.vortisch@kit.edu

Study Program Coordination:
PD Dr. Ulf Mohrlok
Department of Civil Engineering, Geo and Environmental Sciences, Bldg. 10.81, R. 329
consultation: on appointment
Phone: 0721/608-46517
Email: ulf.mohrlok@kit.edu

Examination Committee Bachelor:
Prof. Dr.-Ing. Peter Vortisch (chairperson)
Anna Reiffer, M.Sc. (person in charge)
Claude Weyland, M.Sc. (person in charge)
Tim Wörle, M.Sc. (person in charge)
Institute for Transport Studies, Bldg. 10.30, R. 304/308
consultation: Mo. 14.00 – 15.00 h, Th. 11.00 – 12.00 h
Email: pab@bgu.kit.edu
Web: http://www.ifv.kit.edu/pab.php

Students' Advisory Service:
Dr.-Ing. Harald Schneider
Institute of Technology and Management in Construction, Bldg. 50.31, R. 008 (ground floor)
consultation: on appointment
Phone: 0721/608-43881
Email: harald.schneider@kit.edu

'Praktikumsamt' (internship office):
Dr.-Ing. Andreas Kron
Institute of Water and River Basin Management, Bldg. 10.89, R. 103 (1st floor)
consultation: Tu. 09:30 - 11:30 h, out of lecture period on appointment
Phone: 0721/608-48421
Email: Kron@kit.edu
Web: http://iwk.iwg.kit.edu/Praktikumsamt.php

Study Program Service ('Studiengangservice Bau-Geo-Umwelt'):
Department of Civil Engineering, Geo and Environmental Sciences, Bldg. 10.81, R. 312
Email: studiengangservice@bgu.kit.edu
Web: http://www.bgu.kit.edu/studiengangservice.php

Fachschaft:
Students in Civil Engineering, Bldg. 10.81 (Altes Bauing. Gab.), R. 317.1 (3rd floor)
consultation: s. http://www.fs-bau.kit.edu
Phone: 0721/608-43895
Email: fsbau@lists.kit.edu
Web: http://www.fs-bau.kit.edu
4 Current changes

In the following, the important changes are listed as from winter term 2019/20. Although this process was done with great care, other/minor changes may exist

none
5 Modules

5.1 Module: Structural Analysis (bauiBFP1-BSTAT) [M-BGU-101752]

Responsible: Prof. Dr.-Ing. Werner Wagner
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Structural Analysis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Each summer term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Module Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103387</td>
<td>Structural Analysis I</td>
<td>5 CR</td>
<td>Wagner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-103388</td>
<td>Structural Analysis II</td>
<td>5 CR</td>
<td>Wagner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-103387 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-103388 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Competence Goal

The students can assign and apply the essential steps for modeling and calculating 2D- and 3D-beam structures. Hence, they are able to calculate and interpret the displacement and stress resultant fields for the design and construction of associated structures. The students practice logical and abstract thinking by deriving and applying methods of structural analysis. They transfer this knowledge to the application of computer based computations and they evaluate their results.

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Prerequisites

none

Content

Calculation of statically determined and un-determined 2D- and 3D-Beam Structures:

- idealisations
- load bearing behaviour
- stress resultants
- discrete displacements
- controls
- symmetry
- application of numerical programs
- influence lines, KV, VV
- FEM for 2d truss structures
- prestressing

Outlook: surface structures, FE-modeling, nonlinearities

Recommendation

none

Annotation

none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Structural Analysis I lecture, exercise, tutorial: 75 h
- Structural Analysis II lecture, exercise, tutorial: 75 h

independent study:

- preparation and follow-up lectures, exercises Structural Analysis I: 15 h
- examination preparation Structural Analysis I: 60 h
- preparation and follow-up lectures, exercises Structural Analysis II: 15 h
- examination preparation Structural Analysis II: 60 h

total: 300 h

Literature
Vorlesungsmanuskript Baustatik I
Vorlesungsmanuskript Baustatik II
Module: Basics of Reinforced Concrete (bauiBFP2-KSTR.A) [M-BGU-103696]

Responsible: Prof. Dr.-Ing. Lothar Stempniewski
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Structural Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103389</td>
<td>Basics of Reinforced Concrete I</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-BGU-103390</td>
<td>Basics of Reinforced Concrete II</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-103389 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-103390 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Competence Goal
The students can explain the principle load-bearing behavior of the composite material reinforced concrete. They are able to combine the already gained knowledge from the modules in mechanics, 'Structural Analysis', 'Building Materials' and 'Structural Design', to transfer and apply it to reinforced concrete. Hence, they are able to design simple structures for the limit of load-bearing capacity by means of the recent norms and structural elements with respect to the arrangement of reinforcement.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Prerequisites
none

Content
- material properties and composite behavior of concrete and steel
- design of typical reinforced concrete sections for longitudinal and transverse forces

Recommendation
none

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Basics of Reinforced Concrete I lecture, exercise: 45 h
- Basics of Reinforced Concrete II lecture/exercise: 30 h

independent study:
- preparation and follow-up lectures, exercises Basics of Reinforced Concrete I: 15 h
- examination preparation Basics of Reinforced Concrete I: 45 h
- preparation and follow-up lecture/exercises Basics of Reinforced Concrete II: 15 h
- examination preparation Basics of Reinforced Concrete II: 30 h

total: 180 h
5.3 Module: Basics in Steel and Timber Structures (bauiBFP3-KSTR.B) [M-BGU-103697]

**Responsible:** Prof. Dr.-Ing. Hans Joachim Blaß  
Prof. Dr.-Ing. Thomas Ummenhofer

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** Structural Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107462</td>
<td>Basics in Steel Structures</td>
<td>4 CR</td>
<td>Ummenhofer</td>
</tr>
<tr>
<td>T-BGU-107463</td>
<td>Basics in Timber Structures</td>
<td>4 CR</td>
<td>Blaß</td>
</tr>
</tbody>
</table>

**Competence Certificate**

- 'Teilleistung' T-BGU-107462 with written examination according to § 4 Par. 2 No. 1  
- 'Teilleistung' T-BGU-107463 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'.

**Competence Goal**

The students can describe the basic characteristics of the construction materials steel and timber. They can analyze and evaluate the load carrying effect of steel and timber structures. The students can design common structural elements and joints. They are able to design structural elements endangering stability.

**Module grade calculation**

Grade of the module is CP weighted average of grades of the partial exams

**Prerequisites**

None

**Content**

**Basics in Steel Structures:**

- materials
- structural types, support links
- tension and bending stressed bars
- connections in steel structures
- stability proofs

**Basics in Timber Structures:**

- basics: timber in construction, wood as building material, solid timber and glued laminated timber – strength classes, limit state design and safety format, volume and stress distribution effects on the strength
- design of elements: tension and compression, bending, shear and torsion, columns and buckling lengths, tapered, curved and pitched cambered beams, bracing
- joints: mechanical timber joints – general, joints with dowel-type fasteners – theory, nailed joints, bolted and dowelled joints, joints with screws, ring and shear-plate connector joints, toothed-plate connector joints

**Recommendation**

None

**Annotation**

None
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Basics in Steel Structures lecture, exercise: 45 h
- Basics in Timber Structures lecture, exercise: 45 h

independent study:

- preparation and follow-up lectures, exercises Basics in Steel Structures: 20 h
- examination preparation Basics in Steel Structures: 55 h
- preparation and follow-up lecture/exercises Basics in Timber Structures: 20 h
- examination preparation Basics in Timber Structures: 55 h

total: 240 h

Literature

5.4 Module: Water and Environment (bauiBFP4-WASSER) [M-BGU-103405]

Responsibility:
- Dr.-Ing. Stephan Fuchs
- Dr.-Ing. Frank Seidel
- Prof. Dr.-Ing. Erwin Zehe

Organisation:
KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
Water and Environment

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

- T-BGU-106800 Water and Environment

Competence Certificate
- 'Teilleistung' T-BGU-106800 with written examination according to § 4 Par. 2 No. 1
  details about the learning control see at the 'Teilleistung'

Competence Goal
The students can describe the relevant processes upon which the water cycle is based on as well as the tasks of a consulting engineer with respect to water management and sanitation. They can explain in which way particularly anthropogenic caused changes impact on hydrological processes, change these and what kind of requirements for the tasks in water management and sanitation result from these. They are able to plan and design water management measures and sanitary facilities for specific applications and functions by evaluating data and information and classifying them in to the context of their problem.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
The module imparts the fundamentals in the water sector essential for civil engineering. Here, the fundamental processes as well as technical aspects are considered. Important topics are:

- processes of the water cycle and water balance
- discharge and discharge generation
- soil hydrology
- modeling concepts in catchment hydrology
- principles and applications of open channel flow
- sediment transport in rivers
- facilities for discharge control / hydraulic structures
- processes in urban water management
- sanitary engineering
- storm water treatment
- waste water treatment

Recommendation
The course Environmental Physics / Energy (6200112) should be attended.

Annotation
none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

• Hydraulic Engineering and Water Management lecture, exercise: 45 h
• Hydrology lecture, exercise: 45 h
• Water Supply and Sanitation lecture, exercise: 45 h

independent study:

• preparation and follow-up lectures, exercises Hydraulic Engineering and Water Management: 45 h
• preparation and follow-up lectures, exercises Hydrology: 45 h
• preparation and follow-up lectures, exercises Water Supply and Sanitation: 45 h
• examination preparation: 90 h

total: 360 h
### Module: Mobility and Infrastructure (bauiBFP5-MOBIN) [M-BGU-103486]

**Responsible:** Prof. Dr.-Ing. Ralf Roos  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** Mobility and Infrastructure

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each summer term</td>
<td>1 semester</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106832</td>
<td>Term Papers Transportation</td>
<td>0 CR Vortisch</td>
</tr>
<tr>
<td>T-BGU-106833</td>
<td>Term Papers Highway Engineering</td>
<td>0 CR Roos</td>
</tr>
<tr>
<td>T-BGU-101791</td>
<td>Mobility and Infrastructure</td>
<td>12 CR Roos, Vortisch</td>
</tr>
</tbody>
</table>

#### Competence Certificate
- 'Teilleistung' T-BGU-106832 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106833 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-101791 with written examination according to § 4 Par. 2 No. 1

#### Competence Goal
The students can name and explain the basic methods and procedures to deal with general problems in spatial planning, transport studies and highway engineering. They are able to examine fundamental calculations related to the mentioned subjects and to use the required tools in a methodically appropriate way. Further, they can argue specialized, find, develop and evaluate solutions.

#### Module grade calculation
grade of the module is grade of the exam

#### Prerequisites
none

#### Content
The module is divided into 3 parts:
The part Spatial Planning and Planning Law involves basic tasks and problems on different planning levels such as land use and conflicts, provision of services and infrastructure as well as their costs, planning on local, regional, national and European level.
The fundamentals of transportation planning (convention for analyses, surveys of travel behaviour) and traffic engineering are covered by the part Transport Studies.
The part Design Basics in Highway Engineering involves road network layout, principles of highway design, driving dynamics, earthworks as well as pavements and their dimensioning.

#### Recommendation
none

#### Annotation
None
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Spatial Planning and Planning Law lecture, exercise: 45 h
- Transportation lecture, exercise: 45 h
- Design Basics in Highway Engineering lecture, exercise: 45 h

independent study:

- preparation and follow-up lectures, exercises Spatial Planning and Planning Law: 30 h
- preparation and follow-up lectures, exercises Transportation: 15 h
- preparation and follow-up lectures, exercises Design Basics in Highway Engineering: 15 h
- preparation of student research papers: 80 h
- examination preparation: 80 h

total: 355 h
Module: Technology and Management in Construction (bauiBFP6-TMB) [M-BGU-101754]

**Responsible:** Prof. Dr.-Ing. Shervin Haghsheno

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** Technology and Management in Construction Operation

**Credits** 11

**Recurrence** Each summer term

**Language** German

**Level** 3

**Version** 1

### Mandatory

| T-BGU-103392 | Technology and Management in Construction | 11 CR | Haghsheno |

### Competence Certificate

- 'Teilleistung' T-BGU-103392 with written examination according to § 4 Par. 2 No. 1

Details about the learning control see at the 'Teilleistung'

### Competence Goal

After completion of the module Technology and Management in Construction Operation the students are able to work on common technical and economic problems in construction operation. During the lecture Construction Technology the students obtain the ability to compare different construction technologies. They can list different machinery and methods and compare and evaluate their advantages and disadvantages. They are able to run basic production calculations in different fields of construction management with respect to their later professional life. They can apply common design tools for this purpose. Furthermore, they understand different theoretical topics of different fields in construction management and can these explain and interlink with each other. In the economic field, students can perform calculations of internal and external accounting. You can perform simple bookings for creating a balance sheet, select investment alternatives using appropriate methods of investment appraisal and are able to discuss the processes involved in the calculation of building projects. Furthermore, students can explain the pros and cons of different topics of the construction sector. On selected topics in the construction contract law, students can take a position. In the area of facility and real estate management, they can describe the specifics of tenancy and perform a service charge settlement. Furthermore, they understand the growing importance of sustainability in real estate management.

### Module grade calculation

Grade of the module is grade of the exam

### Prerequisites

None

### Content

- preliminary project phases and calculation methods
- work preparation and construction work
- construction techniques in structural engineering, underground engineering and earthworks
- basics of machine technology
- accounting and balancing
- financing and investment
- law of contract HOAI / VOB
- fundamentals of facility and real estate management

### Recommendation

None

### Annotation

None
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Construction Technology lecture, exercise: 60 h
- Economics in Construction Operation lecture, exercise: 45 h
- Facility- and Real Estate Management lecture: 15 h

independent study:

- preparation and follow-up lectures, exercises Construction Technology: 45 h
- preparation and follow-up lectures, exercises Economics in Construction Operation: 30 h
- preparation and follow-up lectures Facility- and Real Estate Management: 10 h
- examination preparation: 125 h

total: 330 h
5.7 Module: Geotechnical Engineering (bauiBFP7-GEOING) [M-BGU-103698]

Responsible: N.N.
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Geotechnical Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Each summer term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

| T-BGU-107465 | Geotechnical Engineering | 11 CR | N.N. |

**Competence Certificate**
- 'Teilleistung' T-BGU-107465 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

**Competence Goal**
The students have a scientifically sound understanding of the building material 'soil' with respect to its appearance and mechanical behaviour. They are able to describe the latter on base of soil mechanical and soil hydraulic models, to classify and to analyse respective field and laboratory tests. Because of their knowledge in usual geotechnical construction methods they can self-dependently select, design and describe the construction process for standard applications, such as building foundations, construction pit linings and tunnels adapted to the respective ground and groundwater conditions. Further, they are able to proof self-dependently ultimate limit states and serviceability limit states of those geotechnical constructions and natural slopes and to evaluate the results critically.

**Module grade calculation**
grade of the module is grade of the exam

**Prerequisites**
none

**Content**
The module imparts theoretical principles of soil behavior and demonstrates their practical application in designing of the most common geotechnical constructions. This covers:

- standards, codes and safety concepts in foundation engineering
- subsoil investigation, soil classification, soil properties and soil parameters
- permeability, seepage and groundwater management
- stress distributions in the subsoil, compression behavior and consolidation
- shear resistance of soils, stability of slopes and foundations
- design and settlement calculation of shallow foundations
- earth pressure and earth resistance, design of retaining structures and retaining walls for excavations
- pile foundations, deep foundations and caisson foundations in open water
- methods for soil improvement
- introduction to tunneling

**Recommendation**
The not graded accomplishment Geology in Civil Engineering [T-BGU-103395] shall be passed.
The attendance of the lecture accompanied tutorials (6200417, 6200517) is recommended. Likewise, the preparation of voluntary term papers is absolutely recommended as follow-up and preparation for the examination.

**Annotation**
Tutorials are offered accompanying to the lectures, the participation is strongly recommended. Preparation and follow-up of the lectures can be done by ones-own in terms of working on a student research project.
**Workload**

contact hours (1 HpW = 1 h x 15 weeks):

- Basics in Soil Mechanics lecture, exercise, tutorial: 90 h
- Basics in Foundation Engineering lecture, exercise, tutorial: 90 h

independent study:

- preparation and follow-up lectures, exercises Basics in Soil Mechanics: 30 h
- preparation and follow-up lectures, exercises Basics in Foundation Engineering: 30 h
- examination preparation: 90 h

total: 330 h

**Literature**

Triantafyllidis, Th. (2014): Arbeitsblätter und Übungsblätter Bodenmechanik

Triantafyllidis, Th. (2011): Arbeitsblätter und Übungsblätter Grundbau

Gudehus, G (1981): Bodenmechanik, F. Enke

5.8 Module: Supplements in Engineering (bauiBFW11-INGERG) [M-BGU-103695]

**Responsible:** Prof. Dr.-Ing. Shervin Haghsheno

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** Supplements in Engineering

**Credits:** 8

**Recurrence:** Each term

**Language:** German

**Level:** 3

**Version:** 2

**Election block:** Wahlpflicht Grundfachstudium (8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103326</td>
<td>Partial Differential Equations - Exam</td>
<td>2 CR</td>
<td>Grimm, Hochbruck, Neher</td>
</tr>
<tr>
<td>T-BGU-107466</td>
<td>Introduction to Continuum Mechanics (not graded)</td>
<td>2 CR</td>
<td>Seelig</td>
</tr>
<tr>
<td>T-BGU-107467</td>
<td>Physical Modelling in Hydraulic Engineering</td>
<td>2 CR</td>
<td>Seidel</td>
</tr>
<tr>
<td>T-BGU-107468</td>
<td>Geotechnical Design</td>
<td>2 CR</td>
<td>Grandas Tavera</td>
</tr>
<tr>
<td>T-BGU-107469</td>
<td>Project 'Plan, Design, Engineering'</td>
<td>2 CR</td>
<td>Roos</td>
</tr>
<tr>
<td>T-BGU-107470</td>
<td>Life Cycle Management</td>
<td>2 CR</td>
<td>Dehn, Lennerts</td>
</tr>
<tr>
<td>T-BGU-103399</td>
<td>Programming Exercises Introduction to Computer Programming II</td>
<td>0 CR</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-103398</td>
<td>Introduction to Computer Programming II</td>
<td>2 CR</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-107473</td>
<td>Computer Aided Design (CAD)</td>
<td>2 CR</td>
<td>Haghsheno</td>
</tr>
<tr>
<td>T-BGU-108942</td>
<td>Engineering Hydrology (not graded)</td>
<td>2 CR</td>
<td>Ehret</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Four of the listed learning controls have to be taken. They can be selected freely.

- 'Teilleistung' T-MATH-103326 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-107466 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-107467 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-107468 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-107469 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-107470 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-103399 with not graded accomplishment according to § 4 Par. 3, as examination prerequisite to 'Teilleistung' T-BGU-103398
- 'Teilleistung' T-BGU-103398 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-107473 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-108942 with not graded accomplishment according to § 4 Par. 3

Details about the learning controls see at the respective 'Teilleistung'.

**Competence Goal**

The students can describe additional knowledge of subject of the selected courses and explain methods specific for those subjects. They can describe relationships and methods and can apply them to simple problems in civil engineering. Disciplinary goals are given at the respective course.

**Module grade calculation**

not graded

**Prerequisites**

none

**Content**

see at the respective courses

**Recommendation**

none

**Annotation**

There are four not graded accomplishments to the offered courses to be taken.
Workload
contact hours (1 HpW = 1 h \times 15\ weeks), depending on the selected course:

- Partial Differential Equations lecture, exercise: 30 h
- Introduction to Continuum Mechanics lecture: 30 h
- Physical Modelling in Hydraulic Engineering lecture: 30 h
- Geotechnical Design lecture/exercise: 30 h
- Project ‘Plan, Design, Engineering’ (PEK) appointment on site, project and team meetings, presentations: 16 h
- Life Cycle Management lecture/exercise: 30 h
- Introduction to Computer Programming II lecture, exercise: 30 h
- Computer Aided Design (CAD) lecture/exercise: 30 h
- Engineering Hydrology lecture/exercise: 30 h

independent study, depending on the selected course:

- preparation and follow-up lectures, exercises Partial Differential Equations: 10 h
- test preparation Partial Differential Equations: 20 h
- preparation and follow-up lectures Introduction to Continuum Mechanics: 15 h
- test preparation Introduction to Continuum Mechanics: 15 h
- preparation and follow-up lectures Physical Modelling in Hydraulic Engineering, preparation of experiment reports: 30 h
- preparation student research project Geotechnical Design: 20 h
- colloquium preparation Geotechnical Design (test): 10 h
- preparation and follow-up project meetings ‘PEK’: 6 h
- preparation of group exercise ‘PEK’ (part per person): 35 h
- preparation and follow-up lecture/exercises Life Cycle Management: 10 h
- test preparation Life Cycle Management: 20 h
- preparation of programming exercises Introduction to Computer Programming II (prerequisite): 15 h
- test preparation Introduction to Computer Programming II: 15 h
- preparation of exercise report Computer Aided Design (CAD): 30 h
- preparation and follow-up lectures/exercises Engineering Hydrology: 10 h
- test preparation Engineering Hydrology: 20 h

total: 240 h
5.9 Module: Statics of Rigid Bodies (bauiBGP01-TM1) [M-BGU-101745]

Responsible: Prof. Dr.-Ing. Peter Betsch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Mechanics

Credits: 7, Recurrence: Each winter term, Language: German, Level: 1, Version: 1

Competence Certificate
- ‘Teilleistung’ T-BGU-103377 with written examination according to § 4 Par. 2 No. 1, part of the Orientation Examination according to § 8 Par. 1
  details about the learning control see at the ‘Teilleistung’

Competence Goal
The students can deal with the performance of structures using the model of rigid bodies. Relying on a few basic principles of physics, they can describe systems of rigid bodies starting from simple bodies and implement the procedure with engineering methods. They can apply the principle methodical approaches to the description of technical systems, especially of civil engineering structures.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
- operations with forces – force systems - method of sections
- equilibrium of coplanar/spatial force systems
- force systems, acting on bodies - resultants
- force couple - moments
- reduction of spatial force systems
- equilibrium of rigid bodies
- technical tasks – conventions for support and support conditions – statically determined support, equilibrium conditions
- centroid of an assemblage and of continuous quantities, distributed loads/area loads
- coplanar systems of rigid bodies – technical systems
- internal forces and moments
- ideal truss systems – buildup principle – Ritter’s method of sections
- section forces in beams – distribution of internal forces and moments – differential equation
- the principle of superposition
- friction stick and slip (static and kinetic) – belt friction
- work and energy - energy methods
- kinematics of coplanar motion – the principle of virtual work
- potential force, potential principles of work and energy
- stable and unstable equilibrium, stability

Recommendation
none

Annotation
none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise, tutorial: 105 h

independent study:

- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 60 h

total: 210 h

Literature
Gross / Hauger / Schröder Wall - Technische Mechanik 1
5.10 Module: Strength of Materials (bauiBGP02-TM2) [M-BGU-101746]

Responsible: Prof. Dr.-Ing. Thomas Seelig
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Mechanics

Credits: 9  Recurrence: Each summer term  Language: German  Level: 1  Version: 1

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-103378</th>
<th>Strength of Materials</th>
</tr>
</thead>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-103378 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Competence Goal
Based on the knowledge of the statics of rigid bodies students can name the basic concepts of the strength of materials and elastostatics. They can describe states of stresses and strains and combine with material laws. Thereby, they can determine displacements under general loads built-up by tension/compression, bending, shear and torsion. Hence, they are able to compute even statically indeterminate structures. They are able to compute general systems by means of energy principles and to investigate the stability of elastic structures. The derivation and application is focused in civil engineering problems.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
- tension / compression in bars – stresses/ strains/constitutive equations
- differential equation for bar
- statically determinate and indeterminate problems
- combined stress state – stress vector/ stress tensor
- principle stresses – Mohr’s circle of stress – transformation of stresses and strains
- equilibrium conditions
- strain state, relation between stresses and strains – elastic materials
- yield and fracture criteria
- beam bending
- moments of inertia
- basic equations of pure bending
- normal stresses as the result of bending
- differential equations for beam bending
- single- and multi-field beam structures/superposition law
- shear stresses
- bending combined with normal force/skew bending unsymmetrical cross sections – torsion
- energy methods and deformation energy
- principle of virtual forces – truss systems, beam bending
- influence coefficients – Betti-Maxwell principle
- application of energy methods to statically indeterminate systems
- buckling

Recommendation
The module Statics of Rigid Bodies [bauiBGP01-TM1] shall be attended already.

Annotation
none
**Workload**
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise, tutorial: 120 h

independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 90 h

total: 270 h

**Literature**
Gross / Hauger / Schröder Wall - Technische Mechanik 2
Module: Dynamics (bauiBGP03-TM3) [M-BGU-101747]

Responsible: Prof. Dr.-Ing. Thomas Seelig
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Mechanics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-103379 Dynamics 6 CR Seelig

Competence Certificate
- 'Teilleistung' T-BGU-103379 with written examination according to § 4 Par. 2 No. 1

details about the learning control see at the 'Teilleistung'

Competence Goal
The students can deal with the principles, basic laws and methods of the classical kinetics. They are able to to set up the equations of motion by means of the synthetic and the analytical method and to analyze the dynamical behavior of technical systems. They can describe vibration phenomenons and treat them mechanical-mathematically with the aid of the vibration theory.

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Content
- kinematics of a single mass point (cartesian, polar and natural coordinates)
- kinetics of a single mass point: Newton's fundamental law, equations of equilibrium, work-energy equation
- kinetics of mass point systems
- principle of linear momentum (impact law)
- plane relative motion - kinematics and kinetics of rigid bodies (moments of inertia, principle of angular momentum)
- systems of rigid bodies: synthetic and analytic (Lagrangian equations and approaches, constraints, the degree of freedom, potential and non-potential forces)
- introduction into linear vibration theory: mechanical models, free and focused vibrations of 1 DOF-systems, vibration of 2 DOF-systems
- relative motion

Recommendation
the following modules should be attended already: Statics of Rigid Bodies [bauiBGP01-TM1], Strength of Material [bauiBGP02-TM2]

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise, tutorial: 90 h

independent study:
- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 45 h

total: 180 h

Literature
Gross / Hauger / Schröder Wall - Technische Mechanik 3
Module: Hydromechanics (bauiBGP04-HYDRO) [M-BGU-101748]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Mechanics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>German</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-107586 | Examination Prerequisite Hydromechanics | 0 CR | Eiff |
| T-BGU-103380 | Hydromechanics | 6 CR | Eiff |

Competence Certificate

- 'Teilleistung' T-BGU-107586 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-103380 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Competence Goal

The students are able to identify and explain the fundamental concepts and relations in fluid mechanics. They are able to apply these concepts and relations to solve simple fluid mechanical problems. In their professional lives, the students can effectively use an introductory textbook on fluid mechanics, such as the one proposed, to obtain estimates and find solutions for fluid-flow related problems, with confidence.

Module grade calculation

grade of the module is grade of the exam

Prerequisites
	none

Content

- properties of fluids
- fluid statics: pressure distribution in stagnant fluids, buoyancy
- the Bernoulli equation
- flow kinematics: velocity and acceleration fields, control volumes, Reynolds transport theorem
- finite control volume analysis: conservation of mass, momentum and energy
- introduction to differential analysis of fluid flow
- dimensional analysis, similitude and modeling
- viscous flows in pipes
- flow over immersed bodies
- open-channel flows

Recommendation

the following modules should be attended already:
Analysis and Linear Algebra [bauiBGP05-HM1]
Integration and Multivariate Analysis [bauiBGP06-HM2]
Statics of Rigid Bodies [bauiBGP01-TM1]

Annotation
	none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise, tutorial: 90 h

independent study:

- preparation and follow-up lectures, exercises: 45 h
- preparation of homeworks: 15 h
- examination preparation: 30 h

total: 180 h
Literature
### 5.13 Module: Analysis and Linear Algebra (bauiBGP05-HM1) [M-MATH-101716]

**Responsible:** Prof. Dr. Marlis Hochbruck  
**Organisation:** KIT Department of Mathematics  
**Part of:** Mathematics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103325</td>
<td>Analysis and Linear Algebra - Exam</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
- 'Teilleistung' T-MATH-103325 with written examination according to § 4 Par. 2 No. 1  
- details about the learning control see at the 'Teilleistung'

**Module grade calculation**  
grade of the module is grade of the exam

**Prerequisites**  
none

**Recommendation**  
none

**Workload**  
contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise, tutorial: 120 h

independent study:

- preparation and follow-up lectures, exercises: 60 h  
- examination preparation: 90 h

total: 270 h
5.14 Module: Integration and Multivariate Analysis (bauiBGP06-HM2) [M-MATH-101714]

Responsible: Prof. Dr. Marlis Hochbruck
Organisation: KIT Department of Mathematics
Part of: Mathematics

Credits 9
Recurrence Each summer term
Language German
Level 3
Version 1

Mandatory
T-MATH-103324 Integration and Multivariate Analysis - Exam 9 CR Grimm, Hochbruck, Neher

Competence Certificate
- 'Teilleistung' T-MATH-103324 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Recommendation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise, tutorial: 120 h
independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 90 h

total: 270 h
Module: Applied Statistics (bauiBGP07-STATS) [M-BGU-101749]

Responsible: Dr. Frank Hase
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Mathematics

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each summer term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

T-BGU-103381  Applied Statistics  3 CR  Hase

Competence Certificate

- 'Teilleistung' T-BGU-103381 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Competence Goal

The students own basic understanding of the general principles and applications of statistical methods in the field of civil engineering. By this knowledge they can select appropriate statistical methods and evaluate their applicability for specific problems. They can run own calculations and interpret the results.

Module grade calculation

grade of the module is grade of the exam

Prerequisites

none

Content

- statistical analysis of random samples (statistical values and frequency distribution)
- description of the statistical population by probability density function
- selected probability density functions for discrete and continuous random variables
- confidence intervals and theory of testing
- two-dimensional probability density distribution and linear regression analysis

Recommendation

none

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises: 15 h
- examination preparation: 45 h

total: 90 h

Literature

Kreyszig, E.: Statistische Methoden und ihre Anwendung; Verlag Vandenhoeck und Ruprecht
Sachs, L. (1969): Statistische Auswertemethoden; Springer-Verlag
5.16 Module: Differential Equations (bauiBGP08-HM3) [M-MATH-101712]

Responsible: Prof. Dr. Marlis Hochbruck
Organisation: KIT Department of Mathematics
Part of: Mathematics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103323</td>
<td>Differential Equations - Exam</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- ‘Teilleistung’ T-MATH-103323 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the ‘Teilleistung’

Module grade calculation
grade of the module is grade of the exam

Prerequisites
none

Recommendation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 45 h

independent study:
- preparation and follow-up lectures, exercises: 30 h
- examination preparation: 45 h

total: 120 h
5.17 Module: Building Materials (bauiBGP09-BSTOF) [M-BGU-101750]

**Responsible:** Prof. Dr.-Ing. Frank Dehn

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** Building Materials and Structural Design

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each summer term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103382</td>
<td>Theory of Building Materials</td>
<td>3 CR</td>
<td>Dehn</td>
</tr>
<tr>
<td>T-BGU-103383</td>
<td>Building Materials</td>
<td>9 CR</td>
<td>Dehn</td>
</tr>
</tbody>
</table>

**Competence Certificate**

- 'Teilleistung' T-BGU-103382 with written examination according to § 4 Par. 2 No. 1, part of the Orientation Examination according to § 8 Par. 1
- 'Teilleistung' T-BGU-103383 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

**Competence Goal**

The students can name the fundamental terms of material science and the specific properties of numerous building materials. They can describe the physical and mechanical relations, which result from the material structure and its time- and load-dependent modification. They are able to explain the relationships between structure and properties of building materials. By using the learnt basic knowledge the students can name and describe methods of production, moulding, processing and protection of the durability of building materials. Furthermore, they can specify and evaluate the fundamentals for selecting applicable materials considering environmental aspects and sustainability as well as the building material phenomena by several examples from building practice.

**Module grade calculation**

Grade of the module is CP weighted average of the grades of the partial exams

**Prerequisites**

None

**Content**

In this module the fundamental terms and principles of the atomic and textural structure and the essential mechanical and physical properties of building materials (e.g. steel, concrete, ceramics, glasses, polymers, timber, bituminous materials) are introduced. Especially the production and the source materials as well as their influence on the rheological, chemo-physical and mechanical properties of the building materials are in the focus of interest. Damage types and processes in connection with the durability of building materials are another essential part of the module. In addition the legal regulations regarding testing, supervision and certification of building materials are briefly introduced.

**Recommendation**

None

**Annotation**

None

**Workload**

Contact hours (1 HpW = 1 h x 15 weeks):

- Theory of Building Materials lecture, exercise: 30 h
- Building Materials lecture, exercise: 90 h

Independent study:

- preparation and follow-up lectures, exercises Theory of Building Materials: 15 h
- examination preparation Theory of Building Materials: 45 h
- preparation and follow-up lectures, exercises Building Materials: 60 h
- examination preparation Building Materials: 120 h

Total: 360 h
Literature
lecture notes 'Baustoffkunde und Konstruktionsbaustoffe'
5.18 Module: Structural Design (bauiBGP10-BKONS) [M-BGU-101751]

**Responsible:** Prof. Dr.-Ing. Hans Joachim Bläß  
Prof. Dr.-Ing. Frank Dehn  

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  

**Part of:** Building Materials and Structural Design  

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103384</td>
<td>Building Physics</td>
<td>3</td>
<td>Dehn</td>
</tr>
<tr>
<td>T-BGU-103386</td>
<td>Structural Design</td>
<td>6</td>
<td>Bläß</td>
</tr>
</tbody>
</table>

**Competence Certificate**

- ’Teilleistung’ T-BGU-103384 with written examination according to § 4 Par. 2 No. 1, part of the Orientation Examination according to § 8 Par. 1  
- ’Teilleistung’ T-BGU-103386 with written examination according to § 4 Par. 2 No. 1  

details about the learning control see at the ‘Teilleistung’  

**Competence Goal**
The students can explain the normative requirements regarding the preservation of structures and the related methods of calculation. They can describe the physical problems concerning heat protection, moisture protection, noise control and fire protection as well as the application of the physical relationships on structures and construction elements. They can explain the load transfer and the distribution of forces in structures and with this they are able to determine loads on structures, to persecute the loads to the foundation based on the choice of load elements and to prove simple elements. They know the functionality of load elements and are able to design simple structures.  

**Module grade calculation**

grade of the module is CP weighted average of grades of the partial exams  

**Prerequisites**
none  

**Content**

- heat and moisture transport processes  
- heat insulation in winter and summer  
- development of molds and condensation protection  
- principles of noise control and fire protection in buildings  
- basis of design and safety concept  
- load bearing systems and actions on structures  
- roof, floor and wall constructions  
- foundations  

**Recommendation**
none  

**Annotation**
none
**Workload**
contact hours (1 HpW = 1 h x 15 weeks):

- Building Physics lecture, exercise: 30 h
- Structural Design lecture, exercise, tutorial: 90 h

independent study:

- preparation and follow-up lectures, exercises Building Physics: 15 h
- examination preparation Building Physics: 45 h
- preparation and follow-up lectures, exercises Structural Design: 15 h
- examination preparation Structural Design: 75 h

**total:** 270 h

**Literature**
lecture notes "Bauphysik"
Hohmann, Setzer, Wehling: Bauphysikalische Formeln und Tabellen. Wärmeschutz, Feuchteschutz, Schallschutz. Werner Verlag

lecture notes "Baukonstruktionslehre"
Lehrbuch der Hochbaukonstruktionen (Hrsg.: Cziesielski, Erich)
Baukonstruktion im Planungsprozess (Hrsg.: Franke, Lutz)
Porenbetonhandbuch
Informationsdienst Holz, Holzbau Handbuch, Reihe 2, Teil 3 - Dachbauteile, Folge 1 - Berechnungsgrundlagen
Informationsdienst Holz, Holzbau Handbuch, Reihe 2, Teil 3 - Dachbauteile, Folge 2 - Hausdächer
## 5.19 Module: Basics in Engineering I (bauiBGP15-INGGL1) [M-BGU-103693]

**Responsible:** Prof. Dr.-Ing. Markus Uhlmann  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** Basics in Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107449</td>
<td>Project Management (not graded)</td>
<td>2 CR Haghsheno</td>
</tr>
<tr>
<td>T-BGU-103395</td>
<td>Geology in Civil Engineering</td>
<td>2 CR Blum, Eckhardt</td>
</tr>
<tr>
<td>T-BGU-103397</td>
<td>Programming Exercises Introduction to Computer Programming I</td>
<td>0 CR Uhlmann</td>
</tr>
<tr>
<td>T-BGU-103396</td>
<td>Introduction to Computer Programming I</td>
<td>2 CR Uhlmann</td>
</tr>
</tbody>
</table>

**Compeence Certificate**

- 'Teilleistung' T-BGU-107449 with not graded accomplishment according to § 4 Par. 3  
- 'Teilleistung' T-BGU-103395 with not graded accomplishment according to § 4 Par. 3  
- 'Teilleistung' T-BGU-103397 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite to 'Teilleistung' T-BGU-103396  
- 'Teilleistung' T-BGU-103396 with not graded accomplishment according to § 4 Par. 3  

Details about the learning controls see at the respective 'Teilleistung'.

**Competence Goal**

The students can explain the principles from several related disciplines in their importance for civil engineering. They can describe relationships and operating principles and apply them to simple problems in civil engineering. Disciplinary goals are given at the respective course.

**Module grade calculation**

not graded

**Prerequisites**

none

**Content**

see at the respective courses

**Recommendation**

none

**Annotation**

none

**Workload**

contact hours (1 HpW = 1 h x 15 weeks):

- Project Management lecture/exercise: 30 h  
- Geology in Civil Engineering lecture/exercise: 30 h  
- Project Management lecture/exercise: 30 h  
- independent study:
  - preparation and follow-up lecture/exercises Project Management: 10 h  
  - test preparation Project Management: 20 h  
  - preparation and follow-up lecture/exercises Geology in Civil Engineering: 10 h  
  - test preparation Geology in Civil Engineering: 20 h  
  - preparation of programming exercises Introduction to Computer Programming I: 15 h  
  - test preparation Introduction to Computer Programming I: 15 h

total: 180 h
**Literature**

see at the respective courses
5.20 Module: Basics in Engineering II (bauBGW8-INGGL2) [M-BGU-103694]

Responsible: Prof. Dr.-Ing. Ralf Roos
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Basics in Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Each winter term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Wahlpflicht Grundstudium (2 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107450</td>
<td>Planning Methodology</td>
<td>2 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-103400</td>
<td>Chemistry of Building Materials</td>
<td>2 CR</td>
<td>Bogner</td>
</tr>
<tr>
<td>T-BGU-103401</td>
<td>Environmental Physics / Energy</td>
<td>2 CR</td>
<td>Nestmann</td>
</tr>
<tr>
<td>T-BGU-103402</td>
<td>Technical Illustrations</td>
<td>2 CR</td>
<td>Roos</td>
</tr>
<tr>
<td>T-BGU-103403</td>
<td>Laboratory Course</td>
<td>2 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-101683</td>
<td>Surveying for Civil Engineers and Geophysicists (ungraded)</td>
<td>2 CR</td>
<td>Rösch</td>
</tr>
</tbody>
</table>

Competence Certificate
Two of the listed learning controls have to be taken. They can be selected freely.
- 'Teilleistung' T-BGU-107450 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-103400 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-103401 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-103402 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-103403 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-101683 with not graded accomplishment according to § 4 Par. 3

Details about the learning controls see at the respective ‘Teilleistung’

Competence Goal
The students can explain the principles from selected related disciplines in their importance for civil engineering. They can describe relationships and operating principles and apply them to simple problems from civil engineering. Disciplinary goals are given at the respective course.

Module grade calculation
not graded

Prerequisites
none

Content
see at the respective courses

Recommendation
none

Annotation
There are two not graded accomplishments of the offered courses to be taken.
Workload
contact hours (1 HpW = 1 h x 15 weeks), depending on the selected course:

- Planning Methodology lecture/exercise: 30 h
- Chemistry of Building Materials lecture: 30 h
- Environmental Physics / Energy lecture: 30 h
- Technical Illustrations lecture: 30 h
- Laboratory Course, conduction of 4 experiments (2 x 4 h each): 32 h
- Surveying for Civil Engineers and Geophysicists lecture, exercise: 30 h

independent study, depending on the selected course:

- preparation and follow-up lecture/exercises Planning Methodology: 15 h
- test preparation Planning Methodology: 15 h
- preparation and follow-up lectures Chemistry of Building Materials: 15 h
- test preparation Chemistry of Building Materials: 15 h
- preparation and follow-up lectures Environmental Physics / Energy, preparation of exercises (not graded accomplishment): 30 h
- preparation and follow-up lectures Technical Illustrations: 5 h
- preparation of 3 home exercises Technical Illustrations (part of not graded accomplishment): 15 h
- group exercise Technical Illustrations (part per person, part of not graded accomplishment): 15 h
- reporting experiments Laboratory Course (not graded accomplishment): 24 h
- preparation and follow-up lectures, exercises Surveying for Civil Engineers and Geophysicists: 20 h
- supervision of a surveying exercise (not graded accomplishment): 10 h

total: 120 h

Literature
see at the respective courses
5.21 Module: Module Bachelor Thesis (bauiBSC-THESIS) [M-BGU-103764]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Bachelor Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

'Teilleistung' T-BGU-107601 with thesis and presentation according to § 14
details about the learning control see at the 'Teilleistung'

Competence Goal
The student is able to investigate a complex problem within a particular field of his choice in limited time, following scientific methods. He can search autonomously for literature, can find own approaches, can evaluate his results and can compare them with the state of the art. He is further able to represent clearly the essential matter and results in his bachelor thesis.

Module grade calculation
The grade of the module results from the grades of the Bachelor Thesis and the concluding presentation.

Prerequisites
Prerequisite for the admission to the module Bachelor Thesis is that the student has passed all module examinations from the Basic Studies according to § 20 Paragraph 2 in extent of 90 CP and module examinations of the Basic Subject Studies according to § 20 Paragraph 3 in extent of 35 CP. The examination committee decides about exceptions by request of the student (§14 Par. 1).

Modeled Conditions
The following conditions have to be fulfilled:

1. The following conditions have to be fulfilled:
   1. The field Mechanics must have been passed.
   2. The field Mathematics must have been passed.
   3. The field Building Materials and Structural Design must have been passed.
   4. The field Basics in Engineering must have been passed.
   5. The field Interdisciplinary Qualifications must have been passed.
2. You have to fulfill 4 of 8 conditions:
   1. The module M-BGU-101752 - Structural Analysis must have been passed.
   2. The module M-BGU-101754 - Technology and Management in Construction must have been passed.
   3. The module M-BGU-103405 - Water and Environment must have been passed.
   4. The module M-BGU-103486 - Mobility and Infrastructure must have been passed.
   5. The module M-BGU-103695 - Supplements in Engineering must have been passed.
   6. The module M-BGU-103698 - Geotechnical Engineering must have been passed.
   7. The module M-BGU-103696 - Basics of Reinforced Concrete must have been passed.
   8. The module M-BGU-103697 - Basics in Steel and Timber Structures must have been passed.

Content
The Bachelor Thesis is a first major written report and comprises the theoretical or experimental treatise of a complex problem within a particular field of civil engineering with scientific methods. The student chooses a particular field and can make proposals for the theme.

Recommendation
none

Annotation
information about the procedure regarding admission and registration of the Bachelor Thesis see chap. 2.7.

Workload
appr. 2 months net within a period of 3 months
5.22 Module: Interdisciplinary Qualifications (bauiBW0-UEQUAL) [M-BGU-103854]

**Responsible:** Prof. Dr.-Ing. Peter Vortisch  
**Organisation:** University  
**Part of:** Interdisciplinary Qualifications

**Credits:** 6  
**Recurrence:** Each term  
**Language:** German  
**Level:** 3  
**Version:** 1

**Election block:** Überfachliche Qualifikationen (at least 6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Elective</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107788</td>
<td>Wildcard</td>
<td>1 CR</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
according to elected courses, freely be chosen from the course catalog for Interdisciplinary Qualifications of HoC and ZAK

**Competence Goal**  
Learning outcomes can be divided into three main complementary categories:

1. **Contextual Knowledge**
   - Students are aware of the cultural context of their position and are in a position to consider the views and interests of others (beyond the boundaries of subject, culture, and language).
   - They have enhanced their ability to participate properly and appropriately in academic or public discussions.

2. **Practical Focus**
   - Students have gained an insight into the routines of professional life.
   - They have further developed their capability to learn.
   - They have improved their scope of action by extending their knowledge of foreign languages.
   - They are able to relate their field of experience to basic aspects of business administration and law.

3. **Basic Competences**
   - The students autonomously acquire new knowledge in a planned, specific, and methodologically founded manner and use it for solving tasks and problems.
   - They can evaluate own work.
   - They possess efficient work techniques, can set priorities, take decisions, and assume responsibility.

**Module grade calculation**  
not graded

**Prerequisites**  
none

**Content**  
With the key competences, the House of Competence (HoC) and the Centre for Cultural and General Studies (ZAK) offer a wide range of courses, which are bundled thematically for better orientation. The contents are explained in detail in the descriptions of the courses on the internet pages of HoC (http://www.hoc.kit.edu/lehrangebot.php) and ZAK (http://www.zak.kit.edu/english/general_studies.php).

**Recommendation**  
none

**Annotation**  
The Examination Committee can recognize further suitable courses as interdisciplinary qualifications which are not listed in the mentioned offers of HoC and ZAK. Language courses of the Sprachenzentren (SpZ) are usually recognized. Interdisciplinary qualifications obtained in an internship can be recognized with CPs by means of respective certification. Further information about the selection of Interdisciplinary Qualifications see Sect. 2.8.

In agreement with the examiner the passing of the respective course can be marked. This mark is not considered for the grade of the module as the module is not graded.

**Workload**  
see course description of HoC, and lecture descriptions of ZAK
Module: Further Examinations (bauiBZL) [M-BGU-103857]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Additional Accomplishments

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Zusatzleistungen (at most 30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101683</td>
<td>Surveying for Civil Engineers and Geophysicists (ungraded)</td>
<td>2 CR</td>
<td>Rösch</td>
</tr>
<tr>
<td>T-BGU-103398</td>
<td>Introduction to Computer Programming II</td>
<td>2 CR</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-103399</td>
<td>Programming Exercises Introduction to Computer Programming II</td>
<td>0 CR</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-103400</td>
<td>Chemistry of Building Materials</td>
<td>2 CR</td>
<td>Bogner</td>
</tr>
<tr>
<td>T-BGU-103401</td>
<td>Environmental Physics / Energy</td>
<td>2 CR</td>
<td>Nestmann</td>
</tr>
<tr>
<td>T-BGU-103402</td>
<td>Technical Illustrations</td>
<td>2 CR</td>
<td>Roos</td>
</tr>
<tr>
<td>T-BGU-103403</td>
<td>Laboratory Course</td>
<td>2 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-107450</td>
<td>Planning Methodology</td>
<td>2 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-107466</td>
<td>Introduction to Continuum Mechanics (not graded)</td>
<td>2 CR</td>
<td>Seelig</td>
</tr>
<tr>
<td>T-BGU-107467</td>
<td>Physical Modelling in Hydraulic Engineering</td>
<td>2 CR</td>
<td>Seidel</td>
</tr>
<tr>
<td>T-BGU-107468</td>
<td>Geotechnical Design</td>
<td>2 CR</td>
<td>Grandas Tavera</td>
</tr>
<tr>
<td>T-BGU-107469</td>
<td>Project 'Plan, Design, Engineering'</td>
<td>2 CR</td>
<td>Roos</td>
</tr>
<tr>
<td>T-BGU-107470</td>
<td>Life Cycle Management</td>
<td>2 CR</td>
<td>Dehn, Lennerts</td>
</tr>
<tr>
<td>T-BGU-107473</td>
<td>Computer Aided Design (CAD)</td>
<td>2 CR</td>
<td>Haghsheno</td>
</tr>
<tr>
<td>T-MATH-103326</td>
<td>Partial Differential Equations - Exam</td>
<td>2 CR</td>
<td>Grimm, Hochbruck, Neher</td>
</tr>
<tr>
<td>T-BGU-108942</td>
<td>Engineering Hydrology (not graded)</td>
<td>2 CR</td>
<td>Ehret</td>
</tr>
</tbody>
</table>

Prerequisites
None
6 Courses

6.1 Course: Analysis and Linear Algebra - Exam [T-MATH-103325]

**Responsible:** PD Dr. Volker Grimm  
Prof. Dr. Marlis Hochbruck  
Dr. Markus Neher

**Organisation:** KIT Department of Mathematics  
**Part of:** M-MATH-101716 - Analysis and Linear Algebra

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 0131900</td>
<td>Advanced Mathematics I for Civil Engineering: Analysis and Linear Algebra</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td>Neher</td>
</tr>
<tr>
<td>WS 19/20 0132000</td>
<td>Übungen zu 0131900</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Neher</td>
</tr>
<tr>
<td>WS 19/20 0132100</td>
<td>Ergänzungen zu 0131900</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
<td>Neher</td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam, 90 min.

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none

Below you will find excerpts from events related to this course:

**Advanced Mathematics I for Civil Engineering: Analysis and Linear Algebra**
0131900, WS 19/20, 4 SWS, Language: German, [Open in study portal]

**Description**
The students obtain fundamental knowledge of linear algebra and of differentiation of functions of one variable. They master the mathematical concepts required in qualitative and quantitative modelling in engineering and become able to apply the covered methods for mathematical modelling of engineering problems self-reliantly and with confidence and to solve the resulting mathematical problem with the selected tools.
Learning Content

- numbers and basic arithmetic rules
- propositional calculus
- vectors and matrices
- linear systems of equations
- eigenvalues and eigenvectors of matrices
- sequences and series
- real valued functions
- continuity
- differentiation of functions of one variable
- extreme values
- parametric representation of plane curves
- approximation and interpolation
### 6.2 Course: Applied Statistics [T-BGU-103381]

**Responsible:** Dr. Frank Hase  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-101749 - Applied Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200204</td>
<td>Applied Statistics</td>
<td>2 SWS Lecture / Practice (VÜ) Hase</td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam, 60 min.

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none
6.3 Course: Bachelor Thesis [T-BGU-107601]

**Responsible:** Prof. Dr.-Ing. Peter Vortisch

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103764 - Module Bachelor Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>12</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**
thesis with a duration of 3 months and final presentation, according to § 14

**Prerequisites**
defined for the module Bachelor Thesis [M-BGU-103764]

**Final Thesis**
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline:** 3 months
- **Maximum extension period:** 1 months
- **Correction period:** 6 weeks

**Recommendation**
none

**Annotation**
information about the procedure regarding admission and registration of the Bachelor Thesis see chap. 2.7.
**6.4 Course: Basics in Steel Structures [T-BGU-107462]**

**Responsible:** Prof. Dr.-Ing. Thomas Ummenhofer  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-103697 - Basics in Steel and Timber Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credit(s)</th>
<th>Lecturer(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200504</td>
<td>Grundlagen des Stahlbaus</td>
<td>2</td>
<td>Lecture</td>
<td>2</td>
<td>Kasper, Ummenhofer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200505</td>
<td>Übungen zu Grundlagen des Stahlbaus</td>
<td>1</td>
<td>Practice</td>
<td>1</td>
<td>Kasper</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
written exam, 70 min.

**Prerequisites**  
The module examinations in the subjects Mechanics and Mathematics as well as the module examination Structural Design has to be passed all except two.

**Modeled Conditions**  
You have to fulfill 7 of 9 conditions:

1. The module M-BGU-101745 - Statics of Rigid Bodies must have been passed.
2. The module M-BGU-101746 - Strength of Materials must have been passed.
3. The module M-BGU-101747 - Dynamics must have been passed.
4. The module M-BGU-101748 - Hydromechanics must have been passed.
5. The module M-MATH-101716 - Analysis and Linear Algebra must have been passed.
6. The module M-MATH-101714 - Integration and Multivariate Analysis must have been passed.
7. The module M-BGU-101749 - Applied Statistics must have been passed.
8. The module M-MATH-101712 - Differential Equations must have been passed.
9. The module M-BGU-101751 - Structural Design must have been passed.

**Recommendation**  
none

**Annotation**  
none
# 6.5 Course: Basics in Timber Structures [T-BGU-107463]

**Responsible:** Prof. Dr.-Ing. Hans Joachim Blaß

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103697 - Basics in Steel and Timber Structures

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6200507</td>
<td>Written examination</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6200508</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Blaß</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 6200508</td>
<td>Lecture (V)</td>
<td>1 SWS</td>
<td>Blaß, Assistenten</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

written exam, 60 min.

**Prerequisites**
The module examinations in den subjects Mechanics and Mathematics as well as the module examination Structural Design must have been passed all except two.

**Modeled Conditions**
You have to fulfill 7 of 9 conditions:

1. The module M-BGU-101745 - Statics of Rigid Bodies must have been passed.
2. The module M-BGU-101746 - Strength of Materials must have been passed.
3. The module M-BGU-101747 - Dynamics must have been passed.
4. The module M-BGU-101748 - Hydromechanics must have been passed.
5. The module M-MATH-101716 - Analysis and Linear Algebra must have been passed.
6. The module M-MATH-101714 - Integration and Multivariate Analysis must have been passed.
7. The module M-BGU-101749 - Applied Statistics must have been passed.
8. The module M-MATH-101712 - Differential Equations must have been passed.
9. The module M-BGU-101751 - Structural Design must have been passed.

**Recommendation**
none

**Annotation**
none
6.6 Course: Basics of Reinforced Concrete I [T-BGU-103389]

**Responsible:** Prof. Dr.-Ing. Lothar Stempniewski  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-103696 - Basics of Reinforced Concrete

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200509</td>
<td>Grundlagen des Stahlbetonbaus I</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Stempniewski</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200510</td>
<td>Übungen zu Grundlagen des Stahlbetonbaus I</td>
<td>Practice (Ü)</td>
<td>1 SWS</td>
<td>Labbé Romo</td>
</tr>
</tbody>
</table>

**Competence Certificate**

written exam, 90 min.

**Prerequisites**
The module examinations in the subjects Mechanics and Mathematics as well as the module examination Structural Design has to be passed all except two.

**Modeled Conditions**

You have to fulfill 7 of 9 conditions:

1. The module M-BGU-101745 - Statics of Rigid Bodies must have been passed.
2. The module M-BGU-101746 - Strength of Materials must have been passed.
3. The module M-BGU-101747 - Dynamics must have been passed.
4. The module M-BGU-101748 - Hydromechanics must have been passed.
5. The module M-MATH-101716 - Analysis and Linear Algebra must have been passed.
6. The module M-MATH-101714 - Integration and Multivariate Analysis must have been passed.
7. The module M-BGU-101749 - Applied Statistics must have been passed.
8. The module M-MATH-101712 - Differential Equations must have been passed.
9. The module M-BGU-101751 - Structural Design must have been passed.

**Recommendation**

none

**Annotation**

none
6.7 Course: Basics of Reinforced Concrete II [T-BGU-103390]

Responsible: Prof. Dr.-Ing. Lothar Stempniewski
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103696 - Basics of Reinforced Concrete

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2019 | 6200601 | Basics of Reinforced Concrete II | 2 SWS | Lecture / Practice (VÜ) | Stempniewski |

Competence Certificate
written exam, 60 min.

Prerequisites
The module examinations in the subjects Mechanics and Mathematics as well as the module examination Structural Design have to be passed all except two.

Modeled Conditions
You have to fulfill 7 of 9 conditions:

1. The module M-BGU-101745 - Statics of Rigid Bodies must have been passed.
2. The module M-BGU-101746 - Strength of Materials must have been passed.
3. The module M-BGU-101747 - Dynamics must have been passed.
4. The module M-BGU-101748 - Hydromechanics must have been passed.
5. The module M-MATH-101716 - Analysis and Linear Algebra must have been passed.
6. The module M-MATH-101714 - Integration and Multivariate Analysis must have been passed.
7. The module M-BGU-101749 - Applied Statistics must have been passed.
8. The module M-MATH-101712 - Differential Equations must have been passed.
9. The module M-BGU-101751 - Structural Design must have been passed.

Recommendation
none

Annotation
none
6.8 Course: Building Materials [T-BGU-103383]

Responsible: Prof. Dr.-Ing. Frank Dehn
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101750 - Building Materials

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6200307</td>
<td>4 SWS</td>
<td>Each term</td>
<td>Written examination</td>
<td>1</td>
</tr>
<tr>
<td>WS 19/20 6200308</td>
<td>2 SWS</td>
<td>Each term</td>
<td>Practice (Ü)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 120 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.9 Course: Building Physics [T-BGU-103384]

Responsible: Prof. Dr.-Ing. Frank Dehn
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101751 - Structural Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2019</th>
<th>6200208</th>
<th>Building Physics</th>
<th>1 SWS</th>
<th>Lecture (V)</th>
<th>Dehn</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200209</td>
<td>Exercises to Building Physics</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Lamparter</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.
part of the Orientation Examination according to § 8 Par. 1, to be taken until the end of the examination period of the 2nd semester

Prerequisites
none

Recommendation
none

Annotation
none
Course: Chemistry of Building Materials [T-BGU-103400]

Responsible: Dr. rer. nat. Andreas Bogner
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103694 - Basics in Engineering II
M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WS 19/20 | 6200108 | Bauchemie | 2 SWS | Lecture (V) | Bogner |

Competence Certificate
written test, 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.11 Course: Computer Aided Design (CAD) [T-BGU-107473]

**Responsible:** Prof. Dr.-Ing. Shervin Haghsheno

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103695 - Supplements in Engineering
M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>2</th>
<th>Recurrence</th>
<th>Each winter term</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>6200520</th>
<th>Computer Aided Design (CAD)</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Haghsheno</th>
</tr>
</thead>
</table>

**Competence Certificate**
production of CAD plans

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none
6.12 Course: Differential Equations - Exam [T-MATH-103323]

Responsible: PD Dr. Volker Grimm  
Prof. Dr. Marlis Hochbruck  
Dr. Markus Neher

Organisation: KIT Department of Mathematics  
Part of: M-MATH-101712 - Differential Equations

Type: Written examination  
Credits: 4  
Recurrence: Each term  
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0132200</td>
<td>Advanced Mathematics 3 for the Branch of Study Civil Engineering (differential equations)</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Grimm</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0132300</td>
<td>Exercices to 0132200</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Grimm</td>
</tr>
</tbody>
</table>

Competence Certificate  
written exam, 60 min.

Prerequisites  
none

Recommendation  
none

Annotation  
none

Below you will find excerpts from events related to this course:

Advanced Mathematics 3 for the Branch of Study Civil Engineering (differential equations)  
0132200, WS 19/20, 2 SWS, Language: German, Open in study portal

Learning Content
- ordinary differential equations (ODEs)
- linear ODEs
- systems of ODEs
- elementary ODEs
- power series solutions of ODEs
- numerical methods for ODEs
- Fourier series
- boundary problems and eigenvalue problems
- partial differential equations of second order

Exercices to 0132200  
0132300, WS 19/20, 1 SWS, Language: German, Open in study portal
Learning Content

- ordinary differential equations (ODEs)
- linear ODEs
  - systems of ODEs
  - elementary ODEs
  - power series solutions of ODEs
- numerical methods for ODEs
- boundary problems and eigenvalue problems
- Fourier series
- partial differential equations of second order
6.13 Course: Dynamics [T-BGU-103379]

Responsible: Prof. Dr.-Ing. Thomas Seelig
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101747 - Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200301</td>
<td>Dynamik</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Seelig</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200302</td>
<td>Übungen zu Dynamik</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Mitarbeiter/innen</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200303</td>
<td>Tutorien zu Dynamik</td>
<td>2 SWS</td>
<td>Tutorial (Tu)</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 150 min.

Prerequisites
none

Recommendation
none

Annotation
none
### 6.14 Course: Engineering Hydrology (not graded) [T-BGU-108942]

**Responsible:** Dr.-Ing. Uwe Ehret  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-103695 - Supplements in Engineering  
M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
written test, 60 min.

**Prerequisites**  
none

**Recommendation**  
none

**Annotation**  
### Course: Environmental Physics / Energy [T-BGU-103401]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Franz Nestmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Civil Engineering, Geo- and Environmental Sciences</td>
</tr>
</tbody>
</table>
| Part of: | M-BGU-103694 - Basics in Engineering II  
M-BGU-103857 - Further Examinations |

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200112</td>
<td>Umweltphysik / Energie</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Nestmann</td>
</tr>
</tbody>
</table>

**Competence Certificate**
- attested exercises

**Prerequisites**
- none

**Recommendation**
- none

**Annotation**
- none
### 6.16 Course: Examination Prerequisite Hydromechanics [T-BGU-107586]

**Responsible:** Prof. Dr. Olivier Eiff  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-101748 - Hydromechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6200304</td>
<td>Hydromechanik</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Eiff</td>
</tr>
<tr>
<td>WS 19/20 6200305</td>
<td>Übungen zu Hydromechanik</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Dupuis</td>
</tr>
<tr>
<td>WS 19/20 6200306</td>
<td>Tutorien zu Hydromechanik</td>
<td>2 SWS</td>
<td>Tutorial (Tu)</td>
<td>Eiff, Dupuis, Tutoren</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
preparation of 3 exercises

**Prerequisites**  
none

**Recommendation**  
none

**Annotation**  
none
6.17 Course: Geology in Civil Engineering [T-BGU-103395]

**Responsible:** Prof. Dr. Philipp Blum
Prof. Dr. Jörg-Detlef Eckhardt

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103693 - Basics in Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| SS 2019 | 6340101 | Geologie im Bauwesen | 2 SWS | Lecture / Practice (VÜ) | Eckhardt, Blum |

**Competence Certificate**
written test, 20 min.

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none
6.18 Course: Geotechnical Design [T-BGU-107468]

**Responsible:** Dr. Carlos Grandas Tavera

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103695 - Supplements in Engineering

**M-BGU-103857 - Further Examinations**

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>6200611</th>
<th>Geotechnical Design</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Grandas Tavera, Chrisopoulos</th>
</tr>
</thead>
</table>

**Competence Certificate**

term paper in team work with colloquium, report per student appr. 15 pages

**Prerequisites**

none

**Recommendation**

none

**Annotation**

none

Below you will find excerpts from events related to this course:

**Geotechnical Design**

6200611, SS 2019, 2 SWS, Language: German, [Open in study portal](#)

**Learning Content**

In-depth exercises concerning the subjects of module "Geotechnical Engineering" with a project homework covering:

- soil investigation, classification and material properties,
- consolidation under ballast loads,
- settlement analysis of structures,
- shear strength,
- slope stability analysis,
- anchored sheetpile retaining wall,
- dewatering of construction pits,
- spread foundations under multiaxial load,
- design of pile foundations

**Literature**

Triantafyllidis, Th.: Arbeitsblätter und Übungsblätter Bodenmechanik

Triantafyllidis, Th.: Arbeitsblätter und Übungsblätter Grundbau

Gudehus, G (1981): Bodenmechanik, F. Enke

T 6.19 Course: Geotechnical Engineering [T-BGU-107465]

Responsible: N.N.
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103698 - Geotechnical Engineering

Type
Credits
Recurrence
Version
Written examination
11
Each term
1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200415</td>
<td>Basics in Soil Mechanics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Triantafyllidis</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200416</td>
<td>Exercises to Basics in Soil Mechanics</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Triantafyllidis</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200417</td>
<td>Tutorials to Basics in Soil Mechanics</td>
<td>2</td>
<td>Tutorial (Tu)</td>
<td>Mitarbeiter/innen</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200515</td>
<td>Basics in Foundation Engineering</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Kudella</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200516</td>
<td>Exercises to Basics of Foundation Engineering</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Kudella</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200517</td>
<td>Tutorial to Basics in Foundation Engineering</td>
<td>2</td>
<td>Tutorial (Tu)</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 150 min.

Prerequisites
The module examinations in den subjects Mechanics and Mathematics as well as the module examination Structural Design has to be passed all except two.

Modeled Conditions
You have to fulfill 7 of 9 conditions:

1. The module M-BGU-101745 - Statics of Rigid Bodies must have been passed.
2. The module M-BGU-101746 - Strength of Materials must have been passed.
3. The module M-BGU-101747 - Dynamics must have been passed.
4. The module M-BGU-101748 - Hydromechanics must have been passed.
5. The module M-MATH-101716 - Analysis and Linear Algebra must have been passed.
6. The module M-MATH-101714 - Integration and Multivariate Analysis must have been passed.
7. The module M-BGU-101749 - Applied Statistics must have been passed.
8. The module M-MATH-101712 - Differential Equations must have been passed.
9. The module M-BGU-101751 - Structural Design must have been passed.

Recommendation
The preparation of voluntary term papers is strongly recommended as preparation for the examination.

Annotation
none

Below you will find excerpts from events related to this course:

 Basics in Soil Mechanics
6200415, SS 2019, 2 SWS, Language: German, Open in study portal Lecture (V)
Learning Content

- Standards and codes, definitions, soil classification
- soil properties and soil parameters
- subsoil investigation
- permeability and seepage
- compression behaviour, stress distributions
- settlement calculation, consolidation
- shear resistance of soils
- earth pressure and earth resistance
- stability of slopes (slope failure) and foundations (base failure)

Literature
Triantafyllidis, Th.: Arbeitsblätter und Übungsblätter Bodenmechanik
Gudehus, G (1981): Bodenmechanik, F. Enke

Basics in Foundation Engineering
6200515, WS 19/20, 2 SWS, Language: German, Open in study portal

Learning Content
· safety concepts in foundation engineering
· dewatering
· spread foundations
· retaining structures
· retaining walls for excavations
· pile foundations, deep foundations and caisson foundations in open water
· soil improvement
· tunneling

Literature
Triantafyllidis, Th. (2011): Arbeitsblätter und Übungsblätter Grundbau
6.20 Course: Hydromechanics [T-BGU-103380]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101748 - Hydromechanics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6 SWS</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Type**
- Written examination

**Credits**
- 6

**Recurrence**
- Each term

**Version**
- 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td></td>
<td>Eiff</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Practice (Ü)</td>
<td>2 SWS</td>
<td></td>
<td>Dupuis</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Tutorial (Tu)</td>
<td>2 SWS</td>
<td></td>
<td>Eiff, Dupuis, Tutoren</td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam, 100 min.

**Prerequisites**
The Examination Prerequisite Hydromechanics (T-BGU-107586) has to be passed.

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The course T-BGU-107586 - Examination Prerequisite Hydromechanics must have been passed.

**Recommendation**
none

**Annotation**
none
### 6.21 Course: Integration and Multivariate Analysis - Exam [T-MATH-103324]

**Responsible:** PD Dr. Volker Grimm  
Prof. Dr. Marlis Hochbruck  
Dr. Markus Neher

**Organisation:** KIT Department of Mathematics

**Part of:** M-MATH-101714 - Integration and Multivariate Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 0181300</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td></td>
<td>Grimm</td>
</tr>
<tr>
<td>Advanced Mathematics II for Civil Engineering: Differential and Integral Calculus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019 0181400</td>
<td>2 SWS</td>
<td>Practice (U)</td>
<td></td>
<td>Grimm</td>
</tr>
<tr>
<td>Übungen zu 0181300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**  
written exam, 90 min.

**Prerequisites**  
none

**Recommendation**  
none

**Annotation**  
none

*Below you will find excerpts from events related to this course:*

**Advanced Mathematics II for Civil Engineering: Differential and Integral Calculus**

0181300, SS 2019, 4 SWS, Language: German, [Open in study portal](#)

**Description**  
The students obtain fundamental knowledge of differentiation of functions of several variables and of integration of functions of one or several variables. They master the mathematical concepts required in qualitative and quantitative modelling in engineering and become able to apply the covered methods for mathematical modelling of engineering problems self-reliantly and with confidence and to solve the resulting mathematical problem with the selected tools.
Learning Content

- integration of functions of one variable
- numerical quadrature
- improper integrals
- applications requiring integral calculus
- functions of several variables
- differentiation of functions of several variables
- extreme values of functions of several variables
- Taylor’s theorem
- Newton’s method
- line and surface integrals of scalar functions
6.22 Course: Introduction to Computer Programming I [T-BGU-103396]

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103396</td>
<td></td>
<td>2</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Responsible:** Prof. Dr.-Ing. Markus Uhlmann

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103693 - Basics in Engineering I

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Term</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Bauinformatik I</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
<td>Uhlmann</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zu Bauinformatik I</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Uhlmann</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
written test, 30 min.

**Prerequisites**
The accomplishment 'Programming Exercises Introduction to Computer Programming I' (T-BGU-103397) has to be passed.

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The course T-BGU-103397 - Programming Exercises Introduction to Computer Programming I must have been passed.

**Recommendation**
none

**Annotation**
none
6.23 Course: Introduction to Computer Programming II [T-BGU-103398]

**Responsible:** Prof. Dr.-Ing. Markus Uhlmann

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:**
- M-BGU-103695 - Supplements in Engineering
- M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Lectures/Practices</th>
<th>Credits</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6200212</td>
<td>Bauinformatik II</td>
<td>1 SWS Lecture (V)</td>
<td>Uhlmann</td>
<td></td>
</tr>
<tr>
<td>SS 2019 6200213</td>
<td>Übungen zu Bauinformatik II</td>
<td>1 SWS Practice (Ü)</td>
<td>Uhlmann</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
written test, 30 min.

**Prerequisites**
The accomplishment 'Programming Exercises Introduction to Computer Programming II' (T-BGU-103399) has to be passed.

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The course T-BGU-103399 - Programming Exercises Introduction to Computer Programming II must have been passed.

**Recommendation**
none

**Annotation**
none
6.24 Course: Introduction to Continuum Mechanics (not graded) [T-BGU-107466]

Responsible: Prof. Dr.-Ing. Thomas Seelig
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103695 - Supplements in Engineering
          M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>6200607</th>
<th>Introduction to Continuum Mechanics</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Franke</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate:
written test, 60 min.

Prerequisites:
none

Recommendation:
none

Annotation:
none
6.25 Course: Laboratory Course [T-BGU-103403]

**Responsible:** Prof. Dr.-Ing. Peter Vortisch

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:**
- M-BGU-103694 - Basics in Engineering II
- M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200118</td>
<td>Laborpraktikum</td>
<td>SWS</td>
<td>Practical course (P)</td>
<td>Vortisch, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

**Competence Certificate**
reports (appr. 2-4 pages each) to 4 experiments at 4 selected institutes

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none
### 6.26 Course: Life Cycle Management [T-BGU-107470]

**Responsible:** Prof. Dr.-Ing. Frank Dehn  
Prof. Dr.-Ing. Kunibert Lennerts

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103695 - Supplements in Engineering  
M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200615</td>
<td>Life Cycle Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
written test, 60 min.

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none
6.27 Course: Mobility and Infrastructure [T-BGU-101791]

**Responsible:** Prof. Dr.-Ing. Ralf Roos  
Prof. Dr.-Ing. Peter Vortisch

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103486 - Mobility and Infrastructure

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6200404</td>
<td>Spatial Planning and Planning Law</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Wilske</td>
</tr>
<tr>
<td>SS 2019 6200405</td>
<td>Exercises to Spatial Planning and Planning Law</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Wilske, Mitarbeiter/innen</td>
</tr>
<tr>
<td>SS 2019 6200406</td>
<td>Transportation Systems</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Vortisch</td>
</tr>
<tr>
<td>SS 2019 6200407</td>
<td>Exercises to Transportation Systems</td>
<td>SWS</td>
<td>Practice (Ü)</td>
<td>Vortisch, Mitarbeiter/innen</td>
</tr>
<tr>
<td>SS 2019 6200408</td>
<td>Design Basics in Highway Engineering</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Roos, Zimmermann</td>
</tr>
<tr>
<td>SS 2019 6200409</td>
<td>Exercises to Design Basics in Highway Engineering</td>
<td>SWS</td>
<td>Practice (Ü)</td>
<td>Plachkova-Dzhurova, Zimmermann</td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam, 150 min.

**Prerequisites**
the ‘Term papers Transportation’ (T-BGU-106832) and the ‘Term papers Highway Engineering’ (T-BGU-106833) must be passed

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The course T-BGU-106832 - Term Papers Transportation must have been passed.
2. The course T-BGU-106833 - Term Papers Highway Engineering must have been passed.

**Recommendation**
None

**Annotation**
one
### 6.28 Course: Partial Differential Equations - Exam [T-MATH-103326]

**Responsible:**
- PD Dr. Volker Grimm
- Prof. Dr. Marlis Hochbruck
- Dr. Markus Neher

**Organisation:** KIT Department of Mathematics

**Part of:**
- M-BGU-103695 - Supplements in Engineering
- M-BGU-103857 - Further Examinations

#### Type
- Completed coursework (written)

#### Credits
- 2

#### Recurrence
- Each term

#### Version
- 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 0181600</td>
<td>Advanced Mathematics 4 for the Branch of Study Civil Engineering: Partial Differential Equations</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Neher</td>
</tr>
<tr>
<td>SS 2019 0181700</td>
<td>Exercises to 0181600</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Neher</td>
</tr>
</tbody>
</table>

**Competence Certificate**
- written test, 60 min.

**Prerequisites**
- none

**Recommendation**
- none

**Annotation**
- none

*Below you will find excerpts from events related to this course:*

#### Advanced Mathematics 4 for the Branch of Study Civil Engineering: Partial Differential Equations
0181600, SS 2019, 2 SWS, Language: German, [Open in study portal](#)

**Description**
- basics
- finite difference methods for parabolic equations
- numerical treatment of hyperbolic problems
- finite element method
### 6.29 Course: Physical Modelling in Hydraulic Engineering [T-BGU-107467]

- **Responsible:** Dr.-Ing. Frank Seidel
- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
- **Part of:** M-BGU-103695 - Supplements in Engineering  
  M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200609</td>
<td>Physical Modelling in Hydraulic Engineering</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Seidel, N.N.</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

2 reports on analyses of experiments, appr. 5 pages each

**Prerequisites**

none

**Recommendation**

none

**Annotation**

none
# 6.30 Course: Planning Methodology [T-BGU-107450]

**Responsible:** Prof. Dr.-Ing. Peter Vortisch  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-103694 - Basics in Engineering II  
M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200104</td>
<td>Planning Methodology</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
written test, 30 min.

**Prerequisites**  
none

**Recommendation**  
none

**Annotation**  
none
6.31 Course: Programming Exercises Introduction to Computer Programming I [T-BGU-103397]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103693 - Basics in Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200114</td>
<td>Bauinformatik I</td>
<td>1</td>
<td>Lecture (V)</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200115</td>
<td>Übungen zu Bauinformatik I</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Competence Certificate
3 attested programming exercises

Prerequisites
none

Recommendation
none

Annotation
none
6.32 Course: Programming Exercises Introduction to Computer Programming II [T-BGU-103399]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103695 - Supplements in Engineering
M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture/Practice</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200212</td>
<td>Lecture (V)</td>
<td>1 SWS</td>
<td>Each summer term</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200213</td>
<td>Practice (Ü)</td>
<td>1 SWS</td>
<td>Each summer term</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Competence Certificate
3 attested programming exercises

Prerequisites
none

Recommendation
none

Annotation
none
## 6.33 Course: Project Management (not graded) [T-BGU-107449]

**Responsible:** Prof. Dr.-Ing. Shervin Haghsheno  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-103693 - Basics in Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200106</td>
<td>Projektmanagement</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Haghsheno, Schneider</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**  
written test, 45 min.

**Prerequisites**  
none

**Recommendation**  
none

**Annotation**  
none
### 6.34 Course: Project 'Plan, Design, Engineering' [T-BGU-107469]

**Responsible:** Prof. Dr.-Ing. Ralf Roos  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-103695 - Supplements in Engineering  
M-BGU-103857 - Further Examinations  

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**  
**SS 2019** | 6200613 | Project 'Plan, Design, Engineering' | 2 SWS | Project (PRO) | Roos, Chlond |

**Competence Certificate**  
Team exercise with intermediate and final presentation, presentation (including 4 plan documents) each 10 min.

**Prerequisites**  
None

**Recommendation**  
None

**Annotation**  
None
6.35 Course: Statics of Rigid Bodies [T-BGU-103377]

Responsible: Prof. Dr.-Ing. Peter Betsch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101745 - Statics of Rigid Bodies

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6200101 Statik starrer Körper</td>
<td>4 SWS</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WS 19/20 6200102 Übungen zu Statik starrer Körper</td>
<td>2 SWS</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WS 19/20 6200103 Tutorien zu Statik starrer Körper</td>
<td>SWS</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 100 min.
part of the Orientation Examination according to § 8 Par. 1, to be taken until the end of the examination period of the 2nd semester

Prerequisites
none

Recommendation
none

Annotation
none
6.36 Course: Strength of Materials [T-BGU-103378]

**Responsible:** Prof. Dr.-Ing. Thomas Seelig

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-101746 - Strength of Materials

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6200201</td>
<td>Written examination</td>
<td>9</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Type**

- Written examination

**Credits**

- 9

**Recurrence**

- Each term

**Version**

- 1

**Events**

- **SS 2019 6200201**
  - Strength of Materials
  - 4 SWS Lecture (V) Seelig

- **SS 2019 6200202**
  - Exercises to Strength of Materials
  - 2 SWS Practice (Ü) Laschütza

- **SS 2019 6200203**
  - Tutorien Technische Mechanik
  - SWS Tutorial (Tu) Laschütza

**Competence Certificate**

written exam, 100 min.

**Prerequisites**

none

**Recommendation**

none

**Annotation**

none
6.37 Course: Structural Analysis I [T-BGU-103387]

**Responsible:** Prof. Dr.-Ing. Werner Wagner

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-101752 - Structural Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>6200401</th>
<th>Structural Analysis I</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Wagner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200402</td>
<td>Exercises to Structural Analysis I</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Weber</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200403</td>
<td>Tutorien zu Baustatik I</td>
<td>2 SWS</td>
<td>Tutorial (Tu)</td>
<td>Weber</td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam, 120 min.

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none
6.38 Course: Structural Analysis II [T-BGU-103388]

**Responsible:** Prof. Dr.-Ing. Werner Wagner

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-101752 - Structural Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200501</td>
<td>Baustatik II</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Wagner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200502</td>
<td>Übungen zu Baustatik II</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>6200503</td>
<td>Tutorien zu Baustatik II</td>
<td>2</td>
<td>Tutorial (Tu)</td>
<td>Weber</td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam, 120 min.

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none
6.39 Course: Structural Design [T-BGU-103386]

**Responsible:** Prof. Dr.-Ing. Hans Joachim Blaß

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-101751 - Structural Design

---

**Type:** Written examination  
**Credits:** 6  
**Recurrence:** Each term  
**Version:** 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6200310</td>
<td>2 SWS</td>
<td>Baukonstruktionslehre</td>
<td>Lecture (V)</td>
<td>Blaß, Steilner</td>
</tr>
<tr>
<td>WS 19/20 6200311</td>
<td>2 SWS</td>
<td>Übungen zu Baukonstruktionslehre</td>
<td>Practice (Ü)</td>
<td>Mitarbeiter/innen, Steilner</td>
</tr>
<tr>
<td>WS 19/20 6200312</td>
<td>2 SWS</td>
<td>Tutorien zu Baukonstruktionslehre</td>
<td>Tutorial (Tu)</td>
<td>Blaß, Steilner</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
written exam, 90 min.

**Prerequisites**  
none

**Recommendation**  
none

**Annotation**  
none
6.40 Course: Surveying for Civil Engineers and Geophysicists (ungraded) [T-BGU-101683]

**Responsible:** Dr.-Ing. Norbert Rösch

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:**
- M-BGU-103694 - Basics in Engineering II
- M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

**Competence Certificate**
- supervision of a surveying exercise

**Prerequisites**
- none

**Recommendation**
- none

**Annotation**
- none
### Course: Technical Illustrations [T-BGU-103402]

**Responsible:** Prof. Dr.-Ing. Ralf Roos  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:**  
- M-BGU-103694 - Basics in Engineering II  
- M-BGU-103857 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6200116</td>
<td>Technisches Darstellen</td>
<td>2</td>
<td>SWS</td>
<td>Roos</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
3 exercises, 1 team exercise with presentation (10 min.)

**Prerequisites**  
none

**Recommendation**  
none

**Annotation**  
none
### 6.42 Course: Technology and Management in Construction [T-BGU-103392]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Shervin Haghsheno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Civil Engineering, Geo- and Environmental Sciences</td>
</tr>
<tr>
<td>Part of</td>
<td>M-BGU-101754 - Technology and Management in Construction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>11</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 6200410</td>
<td>3 SWS</td>
<td>Construction Technology</td>
<td></td>
<td>Gentes, Haghsheno, Schneider</td>
</tr>
<tr>
<td>SS 2019 6200411</td>
<td>1 SWS</td>
<td>Exercises to Construction</td>
<td></td>
<td>Gentes, Haghsheno, Schneider, Waleczko</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019 6200412</td>
<td>2 SWS</td>
<td>Baubetriebswirtschaft</td>
<td></td>
<td>Adams, Lennerts</td>
</tr>
<tr>
<td>SS 2019 6200413</td>
<td>1 SWS</td>
<td>Übungen zu Baubetriebswirtschaft</td>
<td></td>
<td>Lennerts, Adams</td>
</tr>
<tr>
<td>SS 2019 6200414</td>
<td>1 SWS</td>
<td>Facility and Real Estate</td>
<td></td>
<td>Adams, Lennerts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam, 150 min.

**Prerequisites**
none

**Recommendation**
none

**Annotation**
none
6.43 Course: Term Papers Highway Engineering [T-BGU-106833]

**Responsible:** Prof. Dr.-Ing. Ralf Roos  
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences  
**Part of:** M-BGU-103486 - Mobility and Infrastructure

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200408</td>
<td>Design Basics in Highway Engineering</td>
<td>2</td>
<td>Lecture</td>
<td>Roos, Zimmermann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200409</td>
<td>Exercises to Design Basics in Highway Engineering</td>
<td>SWS</td>
<td>Practice</td>
<td>Plachkova-Dzhurova, Zimmermann</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
4 term papers, each paper 5-8 pages incl. planning documents

**Prerequisites**  
none

**Recommendation**  
none

**Annotation**  
none
6.44 Course: Term Papers Transportation [T-BGU-106832]

**Responsible:** Prof. Dr.-Ing. Peter Vortisch
**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
**Part of:** M-BGU-103486 - Mobility and Infrastructure

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th></th>
<th>6200406</th>
<th>Transportation Systems</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Vortisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6200407</th>
<th>Exercises to Transportation Systems</th>
<th>SWS</th>
<th>Practice (Ü)</th>
<th>Vortisch, Mitarbeiter/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

3 term papers, each paper 5-8 pages

**Prerequisites**

none

**Recommendation**

none

**Annotation**

none
6.45 Course: Theory of Building Materials [T-BGU-103382]

Responsible: Prof. Dr.-Ing. Frank Dehn
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101750 - Building Materials

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>6200206</td>
<td>Theory of Building Materials</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200207</td>
<td>Exercises to Theory of Building Materials</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.
part of the Orientation Examination according to § 8 Par. 1, to be taken until the end of the examination period of the 2nd semester

Prerequisites
none

Recommendation
none

Annotation
none
## 6.46 Course: Water and Environment [T-BGU-106800]

**Responsible:**
- Dr.-Ing. Stephan Fuchs
- Prof. Dr. Franz Nestmann
- Prof. Dr.-Ing. Erwin Zehe

**Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences

**Part of:** M-BGU-103405 - Water and Environment

### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>12</td>
<td>Written examination</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>12</td>
<td>Lecture / Practice (VÜ)</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

### Course Details

- **Type:** Written examination
- **Credits:** 12
- **Recurrence:** Each term
- **Version:** 1

### Competence Certificate

written exam, 180 min.

### Prerequisites

The module examinations in the subjects Mechanics and Mathematics as well as the module examination Structural Design has to be passed except two.

### Modeled Conditions

You have to fulfill 7 of 9 conditions:

1. The module M-BGU-101745 - Statics of Rigid Bodies must have been passed.
2. The module M-BGU-101746 - Strength of Materials must have been passed.
3. The module M-BGU-101747 - Dynamics must have been passed.
4. The module M-BGU-101748 - Hydromechanics must have been passed.
5. The module M-MATH-101716 - Analysis and Linear Algebra must have been passed.
6. The module M-MATH-101714 - Integration and Multivariate Analysis must have been passed.
7. The module M-BGU-101749 - Applied Statistics must have been passed.
8. The module M-MATH-101712 - Differential Equations must have been passed.
9. The module M-BGU-101751 - Structural Design must have been passed.

### Recommendation

none

### Annotation

none
6.47 Course: Wildcard [T-BGU-107788]

Organisation: University
Part of: M-BGU-103854 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subject Module Course</td>
<td>Type</td>
<td>1. sem</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td><strong>Mechanics</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statics of Rigid Bodies</td>
<td>U/E 3/2</td>
<td>we 7</td>
</tr>
<tr>
<td>Strength of Materials</td>
<td>U/E 4/2</td>
<td>we 9</td>
</tr>
<tr>
<td>Dynamics</td>
<td>U/E 2/2</td>
<td>we 6</td>
</tr>
<tr>
<td>Hydromechanics</td>
<td>U/E 2/2</td>
<td>we 8</td>
</tr>
<tr>
<td><strong>Mathematics</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis and Linear Algebra</td>
<td>U/E 4/2</td>
<td>we 9</td>
</tr>
<tr>
<td>Integration and Multivariate Analysis</td>
<td>U/E 4/2</td>
<td>we 9</td>
</tr>
<tr>
<td>Applied Statistics</td>
<td>U/E 2</td>
<td>we 3</td>
</tr>
<tr>
<td>Differential Equations</td>
<td>U/E 2</td>
<td>wE 4</td>
</tr>
<tr>
<td><strong>Building Materials and Structural Design</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Materials Theory of Building Materials</td>
<td>U/E 1/1</td>
<td>we 3</td>
</tr>
<tr>
<td>Structural Design Building Physics</td>
<td>U/E 1/1</td>
<td>we 3</td>
</tr>
<tr>
<td><strong>Basics in Engineering</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics in Engineering I Project Management</td>
<td>U/E 2</td>
<td>nA 2</td>
</tr>
<tr>
<td>Geology in Civil Engineering</td>
<td>U/E 2</td>
<td>nA 2</td>
</tr>
<tr>
<td>Introduction to Computer Programming I</td>
<td>U/E 1/1</td>
<td>we 2</td>
</tr>
<tr>
<td><strong>Basics in Engineering II</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Courses</td>
<td>P 2</td>
<td>nA 2</td>
</tr>
<tr>
<td>Technical Illustrations</td>
<td>U/E 2</td>
<td>nA 2</td>
</tr>
<tr>
<td><strong>Interdisciplinary Qualifications</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Qualifications Selection from the offer of HoC and ZAK</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td><strong>Structural Analysis</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Analysis Structural Analysis I</td>
<td>U/E</td>
<td>2/2</td>
</tr>
<tr>
<td>Structural Design Structural Analysis II</td>
<td>U/E</td>
<td>2/2</td>
</tr>
<tr>
<td><strong>Structural Engineering</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Reinforced Concrete Basics of Reinforced Concrete I</td>
<td>U/E</td>
<td>2/1</td>
</tr>
<tr>
<td>Basic in Steel and Timber Structures Basics in Steel Structures</td>
<td>U/E</td>
<td>2/1</td>
</tr>
<tr>
<td><strong>Water and Environment</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water and Environment Hydraulic Engineering and Water</td>
<td>U/E</td>
<td>2/1</td>
</tr>
<tr>
<td><strong>Mobility and Infrastructure</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobility and Infrastructure Spatial Planning and Planning Law</td>
<td>U/E</td>
<td>2/1</td>
</tr>
<tr>
<td>Technology and Management in Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology and Management in Construction Technology</td>
<td>U/E</td>
<td>3/1</td>
</tr>
<tr>
<td>Construction Technology</td>
<td>U/E</td>
<td>2/1</td>
</tr>
<tr>
<td><strong>Geotechnical Engineering</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotechnical Engineering Basics in Soil Mechanics</td>
<td>U/E</td>
<td>2/2</td>
</tr>
<tr>
<td><strong>Supplements in Engineering</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suplements in Engineering Introduction to Continuum Mechanics</td>
<td>U/E</td>
<td>2</td>
</tr>
<tr>
<td>Project Plan, Design, Engineering</td>
<td>U/E</td>
<td>2</td>
</tr>
<tr>
<td>Life Cycle Management</td>
<td>U/E</td>
<td>2</td>
</tr>
<tr>
<td>Computer Aided Design (CAD)</td>
<td>U/E</td>
<td>2</td>
</tr>
<tr>
<td><strong>Bachelor Thesis</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor Thesis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Summe**

|  | 21 | 3E+ 4nA | 27 | 22 | 5E+ 2nA | 32 | 21 | 5E | 31 | 25 | 3E | 31 | 25 | 5E+ 1nA | 31 | 5 | 2E+ 3nA | 28 |