Module Handbook

Civil Engineering
(Master of Science (M.Sc.), ER/SPO 2017)

Summer term 2022
Date: 09/03/2022

KIT DEPARTMENT OF CIVIL ENGINEERING, GEO- AND ENVIRONMENTAL SCIENCES
Table Of Contents

1. Preliminary remarks .. 8

2. Curriculum ... 9

2.1. Objectives of the master degree program .. 9

2.2. Structure of the master degree program .. 10

2.2.1. Study Focus 'Construction Engineering' (SF 1) .. 10

2.2.2. Study Focus 'Water and Environment' (SF 2) .. 11

2.2.2.1. Civil Engineering - Water Management [bauiM1S50-W-BG-MAWASS] - M-BGU-100012 ... 11

2.2.3. Study Focus 'Mobility and Infrastructure' (SF 3) .. 15

2.2.4. Study Focus 'Technology and Management in Construction' (SF 4) ... 18

2.2.5. Study Focus 'Geotechnical Engineering' (SF 5) .. 21

2.3. Mentoring, module selection, individual curriculum ... 28

2.4. Interdisciplinary Qualifications .. 28

2.5. Beginning and completion of a module ... 29

2.6. Registration, deregistration, repetition of examinations .. 29

2.7. Students with disability or chronic disease .. 29

2.8. Crediting and recognition of already obtained accomplishments .. 29

2.9. Admission, preparation and completion of the master's thesis ... 30

2.10. Additional accomplishments .. 30

3. Further information ... 31

3.1. About the module handbook .. 31

3.2. About module examinations, examination committee ... 31

3.3. About changes in module offer ... 31

3.4. Contact persons ... 32

3.5. Abbreviations, translations ... 32

4. Current changes .. 33

5. Modules .. 34

5.1. Design and Construction of Components in Reinforced Concrete [bauiM1P1-BEMISTB] - M-BGU-100033 34

5.2. Steel and Composite Structures [bauiM1P2-STAHLBAU] - M-BGU-100034 .. 36

5.3. Surface Structures and Dynamics of Structures [bauiM1P3-FTW-BD] - M-BGU-100035 ... 38

5.4. Bracing and Stability in Reinforced Concrete [bauiM1S01-STATISTB] - M-BGU-100003 ... 40

5.5. Basics of Prestressed Concrete [bauiM1S02-GDLSPANNB] - M-BGU-100036 ... 41

5.6. Solid Construction Bridges [bauiM1S03-MASSBRUE] - M-BGU-100037 ... 42

5.7. Applied Dynamics of Structures [bauiM1S04-BAUDYN] - M-BGU-100038 ... 43

5.9. Construction of Steel and Composite Bridges [bauiM1S07-STAHLBRU] - M-BGU-100040 ... 46

5.10. Hollow Section Structures [bauiM1S08-HOHLPROFIL] - M-BGU-100004 .. 48

5.11. Glass, Plastic and Cable Structures [bauiM1S09-GlakunSe] - M-BGU-100041 ... 49

5.15. Computational Analysis of Structures [bauiM1S15-CTWM] - M-BGU-100047 ... 56

5.16. FE-Applications in Practical Engineering [bauiM1S16-FEB-PRAXIS] - M-BGU-100048 ... 58

5.21. Fracture and Damage Mechanics [bauiM1S21-BRUCHEME] - M-BGU-100053 .. 64

5.23. Concrete Construction Technology [bauiM1S24-BETONTECH] - M-BGU-100056 ... 68

5.25. Building Preservation of Concrete and Masonry Constructions [bauiM1S26-BBM] - M-BGU-100058 70

5.27. Building Physics II [bauiM1S28-BAUPH-II] - M-BGU-100060 ... 73

5.31. Numerical Structural Dynamics [bauiM1S38-NUMSTRDYN] - M-BGU-100059 ... 78

5.32. Tank Construction [bauiM1S39-BEHBAU] - M-BGU-100058 ... 79

5.34. Contact Mechanics [bauiM1S41-KONTMECH] - M-BGU-104916 ... 83
<table>
<thead>
<tr>
<th>Topic</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.35. Digital Planning and Building Information Modeling</td>
<td>[bauiM1S42-DIGIPLAN] - M-BGU-105135</td>
</tr>
<tr>
<td>5.36. Design and Construction in Metal and Lightweight Structures</td>
<td>[bauiM1S43-ENTW-MLB] - M-BGU-105370</td>
</tr>
<tr>
<td>5.38. Innovations and Developments in Steel and Timber Structures</td>
<td>[bauiM1S45-INNO-MHB] - M-BGU-105372</td>
</tr>
<tr>
<td>5.40. Uncertainty Modeling, Artificial Neural Networks and Optimization in Structural Analysis</td>
<td>[bauiM1S48-KNN] - M-BGU-105929</td>
</tr>
<tr>
<td>5.44. Hydraulic Engineering</td>
<td>[bauiM2P6-ADVHYENG] - M-BGU-103376</td>
</tr>
<tr>
<td>5.47. Subsurface Flow and Contaminant Transport</td>
<td>[bauiM2S03-HY3] - M-BGU-103872</td>
</tr>
<tr>
<td>5.48. Analysis of Spatial Data</td>
<td>[bauiM2S04-HY4] - M-BGU-103762</td>
</tr>
<tr>
<td>5.49. Hydrological Measurements</td>
<td>[bauiM2S05-HY5] - M-BGU-103763</td>
</tr>
<tr>
<td>5.52. Hydro Power Engineering</td>
<td>[bauiM2S11-WB3] - M-BGU-100103</td>
</tr>
<tr>
<td>5.55. Advanced Computational Fluid Dynamics</td>
<td>[bauiM2S21-NSS] - M-BGU-100384</td>
</tr>
<tr>
<td>5.60. River Processes</td>
<td>[bauiM2S49-WB9] - M-BGU-105927</td>
</tr>
<tr>
<td>5.64. Waterway Infrastructure</td>
<td>[bauiM2S43-SW10] - M-BGU-104917</td>
</tr>
<tr>
<td>5.68. River Processes</td>
<td>[bauiM2S49-WB9] - M-BGU-105927</td>
</tr>
<tr>
<td>5.70. River Processes</td>
<td>[bauiM2S49-WB9] - M-BGU-105927</td>
</tr>
<tr>
<td>5.71. Urban and Regional Planning</td>
<td>[bauiM3P1-PLSTAREG] - M-BGU-100007</td>
</tr>
<tr>
<td>5.73. Infrastructure Management</td>
<td>[bauiM3P3-STRINFRA] - M-BGU-100009</td>
</tr>
<tr>
<td>5.74. Tracking Transport Systems</td>
<td>[bauiM3P4-EBTECHNIK] - M-BGU-100010</td>
</tr>
<tr>
<td>5.76. Urban Renewal</td>
<td>[bauiM3P6-PSTUM] - M-BGU-100013</td>
</tr>
<tr>
<td>5.77. Space and Infrastructure</td>
<td>[bauiM3P7-PLRAUMINF] - M-BGU-100014</td>
</tr>
<tr>
<td>5.79. Planning of Transportation Systems</td>
<td>[bauiM3P4-VERPLAN] - M-BGU-100016</td>
</tr>
<tr>
<td>5.80. Highway Design</td>
<td>[bauiM3S05-STRENTW] - M-BGU-100017</td>
</tr>
<tr>
<td>5.81. Road Construction</td>
<td>[bauiM3S06-STRBAUT] - M-BGU-100006</td>
</tr>
<tr>
<td>5.82. Project Integrated Planning</td>
<td>[bauiM3S09-PROJEKTIP] - M-BGU-100018</td>
</tr>
<tr>
<td>5.83. Intermodality in Freight, Long-Distance and Air Transport</td>
<td>[bauiM3S11-VERINTER] - M-BGU-100020</td>
</tr>
<tr>
<td>5.84. Road Safety</td>
<td>[bauiM3S12-STRVWH] - M-BGU-100021</td>
</tr>
<tr>
<td>5.85. Special Topics in Highway Engineering</td>
<td>[bauiM3S13-STRSPESZ] - M-BGU-100022</td>
</tr>
<tr>
<td>5.86. City Transport Facilities</td>
<td>[bauiM3S17-STRIVRA] - M-BGU-100026</td>
</tr>
<tr>
<td>5.87. Project Management in Construction and Real Estate Industry</td>
<td>[bauiM4P5] - M-BGU-100338</td>
</tr>
<tr>
<td>5.89. Production Planning and Control in Construction</td>
<td>[bauiM4P7] - M-BGU-105918</td>
</tr>
</tbody>
</table>
6. Courses

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Module Code</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Advanced Fluid Mechanics</td>
<td>T-BGU-106612</td>
<td>233</td>
</tr>
<tr>
<td>6.3. Agile Project Management in Facility and Real Estate Management</td>
<td>T-BGU-111906</td>
<td>235</td>
</tr>
<tr>
<td>6.4. Analysis and Evolution of Mobility</td>
<td>T-BGU-101004</td>
<td>226</td>
</tr>
<tr>
<td>6.5. Anchoring, Piling and Slurry Wall Technology</td>
<td>T-BGU-100079</td>
<td>227</td>
</tr>
<tr>
<td>6.6. Applied Building Physics</td>
<td>T-BGU-100039</td>
<td>228</td>
</tr>
<tr>
<td>6.7. Applied Dynamics of Structures</td>
<td>T-BGU-100021</td>
<td>229</td>
</tr>
<tr>
<td>6.9. Applied Geotechnics</td>
<td>T-BGU-100073</td>
<td>231</td>
</tr>
<tr>
<td>6.10. Applied Geothermics</td>
<td>T-BGU-108017</td>
<td>232</td>
</tr>
<tr>
<td>6.11. Basics of Finite Elements</td>
<td>T-BGU-100047</td>
<td>233</td>
</tr>
<tr>
<td>6.13. Bracing and Stability in Reinforced Concrete</td>
<td>T-BGU-100018</td>
<td>235</td>
</tr>
<tr>
<td>6.15. Building and Environmental Aerodynamics</td>
<td>T-BGU-111060</td>
<td>237</td>
</tr>
<tr>
<td>6.16. Building Information Modeling (BIM)</td>
<td>T-BGU-108007</td>
<td>238</td>
</tr>
<tr>
<td>6.17. Building Preservation in Steel Structures</td>
<td>T-BGU-110856</td>
<td>239</td>
</tr>
<tr>
<td>6.18. Building Preservation in Timber Structures</td>
<td>T-BGU-110857</td>
<td>240</td>
</tr>
<tr>
<td>6.19. Building Preservation of Concrete and Masonry Constructions</td>
<td>T-BGU-100038</td>
<td>241</td>
</tr>
<tr>
<td>6.20. Building Technology</td>
<td>T-BGU-100040</td>
<td>242</td>
</tr>
<tr>
<td>6.21. City Transport Facilities</td>
<td>T-BGU-100083</td>
<td>243</td>
</tr>
<tr>
<td>6.22. Computational Analysis of Structures</td>
<td>T-BGU-100031</td>
<td>244</td>
</tr>
<tr>
<td>6.23. Computational Structural Dynamics</td>
<td>T-BGU-100999</td>
<td>245</td>
</tr>
</tbody>
</table>
6.24. Concrete Construction Technology - T-BGU-100036 .. 246
6.25. Construction of Steel and Composite Bridges - T-BGU-100024 .. 247
6.27. Continuum Mechanics - T-BGU-106196 .. 249
6.28. Decommissioning of Nuclear Facilities - T-BGU-100627 .. 250
6.29. Design and Construction in Metal and Lightweight Structures - T-BGU-110852 251
6.30. Design and Construction of Components in Reinforced Concrete - T-BGU-100015 252
6.31. Design Exercise Hydraulic Structures - T-BGU-111929 ... 253
6.32. Design Exercise River Engineering - T-BGU-111928 .. 254
6.33. Digital Engineering and Construction - T-BGU-111695 ... 255
6.34. Digital Planning and Building Information Modeling - T-BGU-110382 256
6.35. Digital Technologies in Field Information Modeling - T-BGU-111276 257
6.36. Digitalization in Facility and Real Estate Management - T-BGU-108941 258
6.37. Durability and Service Life Design - T-BGU-100037 .. 259
6.38. Dynamics of Structures - T-BGU-100077 ... 260
6.40. Environmental Communication - T-BGU-101676 .. 262
6.42. Environmentally-Friendly Recycling and Disassembly of Buildings - T-BGU-100146 264
6.43. Equipment and Special Construction Techniques in Building Practice - T-BGU-108009 ... 265
6.44. Examination Prerequisite Environmental Communication - T-BGU-106620 266
6.45. Exercises and Student Research Project City Transport Facilities - T-BGU-109912 267
6.46. Exercises Space and Infrastructure - T-BGU-111278 .. 268
6.47. Experimental Hydraulics II - T-BGU-106773 .. 269
6.49. Facility Management - T-BGU-111908 ... 271
6.50. Facility Management in Hospitals and Hospital Management - T-BGU-109291 272
6.51. FE-Applications in Practical Engineering - T-BGU-100032 .. 273
6.52. Field Training Water Quality - T-BGU-109957 ... 274
6.54. Flow Measurement Techniques - T-BGU-110411 ... 276
6.56. Fracture and Damage Mechanics - T-BGU-100087 ... 278
6.57. Freight Transport - T-BGU-106611 .. 279
6.58. Geostatistics - T-BGU-106605 .. 280
6.60. Glass, Plastic and Cable Structures - T-BGU-100025 .. 282
6.61. Ground Improvement, Grouting and Soil Freezing - T-BGU-100080 283
6.62. Ground Investigation - T-BGU-100072 .. 284
6.63. Ground Water and Earth Dams - T-BGU-100091 ... 285
6.64. Groundwater Flow around Structures - T-BGU-106774 ... 286
6.65. Groundwater Hydraulics - T-BGU-100624 .. 287
6.66. Group Exercise Project Integrated Planning - T-BGU-109916 ... 288
6.67. Highway Design - T-BGU-100057 ... 289
6.68. History of Urban Planning - T-BGU-108441 .. 290
6.69. Hollow Section Structures - T-BGU-100086 ... 291
6.70. Homework 'Basics of Finite Elements' - T-BGU-109908 ... 292
6.71. Homework 'Introduction to Environmental Data Analysis and Statistical Learning' - T-BGU-109950 .. 293
6.72. Hydraulic Engineering - T-BGU-106759 ... 294
6.73. Hydro Power Engineering - T-BGU-100139 ... 295
6.74. Hydrological Measurements in Environmental Systems - T-BGU-106599 296
6.75. Information Management for Public Mobility Services - T-BGU-106608 297
6.76. Infrastructure Management - T-BGU-106300 ... 298
6.77. Innovations and Developments in Metal and Lightweight Structures - T-BGU-110854 299
6.78. Innovations and Developments in Timber Structures - T-BGU-110855 300
6.79. Integrated Design Project in Water Resources Management - T-BGU-111275 301
6.81. Introduction to Environmental Data Analysis and Statistical Learning - T-BGU-109949 ... 303
6.82. Introduction to Matlab - T-BGU-106765 ... 304
6.83. Landfills - T-BGU-100084 .. 305
6.84. Laws and Proceedings Concerning Traffic and Roads - T-BGU-106297 306
6.85. Leadership and Communication - T-BGU-111900 .. 307
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean Construction</td>
<td>T-BGU-108000</td>
</tr>
<tr>
<td>Lean Integrated Project Delivery</td>
<td>T-BGU-111910</td>
</tr>
<tr>
<td>Long-Distance and Air Traffic</td>
<td>T-BGU-106301</td>
</tr>
<tr>
<td>Machinery and Process Engineering</td>
<td>T-BGU-100623</td>
</tr>
<tr>
<td>Mass Fluxes in River Basins</td>
<td>T-BGU-111061</td>
</tr>
<tr>
<td>Master Thesis</td>
<td>T-BGU-110135</td>
</tr>
<tr>
<td>Material Models in Solid Mechanics</td>
<td>T-BGU-100044</td>
</tr>
<tr>
<td>Material Science, Welding and Fatigue</td>
<td>T-BGU-100023</td>
</tr>
<tr>
<td>Materials Testing and Measuring Techniques</td>
<td>T-BGU-100043</td>
</tr>
<tr>
<td>Micromechanics of Heterogeneous Solids</td>
<td>T-BGU-108879</td>
</tr>
<tr>
<td>Modeling of Turbulent Flows RANS and LES</td>
<td>T-BGU-110842</td>
</tr>
<tr>
<td>Modeling Techniques in Solid Mechanics</td>
<td>T-BGU-103223</td>
</tr>
<tr>
<td>Models and Methods in Traffic Engineering and Transportation Planning</td>
<td>T-BGU-100012</td>
</tr>
<tr>
<td>Non-linear Analysis of Beam Structures</td>
<td>T-BGU-100030</td>
</tr>
<tr>
<td>Non-linear Analysis of Surface Structures</td>
<td>T-BGU-100035</td>
</tr>
<tr>
<td>Numerical Flow Modeling in Hydraulic Engineering</td>
<td>T-BGU-106776</td>
</tr>
<tr>
<td>Numerical Fluid Mechanics</td>
<td>T-BGU-106758</td>
</tr>
<tr>
<td>Numerical Fluid Mechanics II</td>
<td>T-BGU-106768</td>
</tr>
<tr>
<td>Numerical Groundwater Modeling</td>
<td>T-BGU-100625</td>
</tr>
<tr>
<td>Numerical Methods in Structural Analysis</td>
<td>T-BGU-100034</td>
</tr>
<tr>
<td>Numerical Modelling in Geotechnics</td>
<td>T-BGU-100107</td>
</tr>
<tr>
<td>Numerics in Geotechnics</td>
<td>T-BGU-106197</td>
</tr>
<tr>
<td>Parallel Programming Techniques for Engineering</td>
<td>T-BGU-106769</td>
</tr>
<tr>
<td>Planning of Transportation Systems</td>
<td>T-BGU-100013</td>
</tr>
<tr>
<td>Practical Exercises Dynamics of Structures</td>
<td>T-BGU-111044</td>
</tr>
<tr>
<td>Practical Fire Protection</td>
<td>T-BGU-100042</td>
</tr>
<tr>
<td>Practical Noise Control</td>
<td>T-BGU-108024</td>
</tr>
<tr>
<td>Production Planning and Control in Construction</td>
<td>T-BGU-111901</td>
</tr>
<tr>
<td>Project Integrated Planning</td>
<td>T-BGU-100061</td>
</tr>
<tr>
<td>Project Lean Integrated Project Delivery</td>
<td>T-BGU-111911</td>
</tr>
<tr>
<td>Project Management in Construction and Real Estate Industry</td>
<td>T-BGU-100622</td>
</tr>
<tr>
<td>Project Paper Lean Construction</td>
<td>T-BGU-101007</td>
</tr>
<tr>
<td>Project Report Water Distribution Systems</td>
<td>T-BGU-108485</td>
</tr>
<tr>
<td>Project Studies in Water Resources Management</td>
<td>T-BGU-106783</td>
</tr>
<tr>
<td>Real Estate Management</td>
<td>T-BGU-100629</td>
</tr>
<tr>
<td>Real Estate und Facility Management on Site Lectures</td>
<td>T-BGU-111909</td>
</tr>
<tr>
<td>Research Seminar Construction Management</td>
<td>T-BGU-108008</td>
</tr>
<tr>
<td>River Basin Modeling</td>
<td>T-BGU-106603</td>
</tr>
<tr>
<td>River Processes</td>
<td>T-BGU-111930</td>
</tr>
<tr>
<td>Road Construction</td>
<td>T-BGU-100098</td>
</tr>
<tr>
<td>Road Safety</td>
<td>T-BGU-100062</td>
</tr>
<tr>
<td>Rock Engineering and Underground Construction</td>
<td>T-BGU-100074</td>
</tr>
<tr>
<td>Rock Mechanics and Tunneling</td>
<td>T-BGU-100069</td>
</tr>
<tr>
<td>Self Assignment HoC-ZAK-SpZ 1 not graded</td>
<td>T-BGU-111596</td>
</tr>
<tr>
<td>Self Assignment HoC-ZAK-SpZ 2 not graded</td>
<td>T-BGU-111597</td>
</tr>
<tr>
<td>Self Assignment HoC-ZAK-SpZ 3 not graded</td>
<td>T-BGU-111598</td>
</tr>
<tr>
<td>Self Assignment HoC-ZAK-SpZ 4 graded</td>
<td>T-BGU-111599</td>
</tr>
<tr>
<td>Self Assignment HoC-ZAK-SpZ 5 graded</td>
<td>T-BGU-111600</td>
</tr>
<tr>
<td>Self Assignment HoC-ZAK-SpZ 6 graded</td>
<td>T-BGU-111601</td>
</tr>
<tr>
<td>Seminar Construction Machinery</td>
<td>T-BGU-111907</td>
</tr>
<tr>
<td>Seminar in Transportation</td>
<td>T-BGU-100014</td>
</tr>
<tr>
<td>Seminar Paper Road Safety</td>
<td>T-BGU-109915</td>
</tr>
<tr>
<td>Seminar Paper Waterway Engineering</td>
<td>T-BGU-106779</td>
</tr>
<tr>
<td>Shell Structures and Stability of Structures</td>
<td>T-BGU-100033</td>
</tr>
<tr>
<td>Solid Construction Bridges</td>
<td>T-BGU-100020</td>
</tr>
<tr>
<td>Space and Infrastructure</td>
<td>T-BGU-100056</td>
</tr>
<tr>
<td>Special Issues in Rock Mechanics</td>
<td>T-BGU-111058</td>
</tr>
<tr>
<td>Special Issues of Soil Mechanics</td>
<td>T-BGU-100071</td>
</tr>
<tr>
<td>Special Topics in Highway Engineering</td>
<td>T-BGU-106734</td>
</tr>
<tr>
<td>Steel and Composite Structures</td>
<td>T-BGU-100016</td>
</tr>
<tr>
<td>Student Research Project 'Building Preservation of Concrete and Masonry Constructions'</td>
<td>T-BGU-100175</td>
</tr>
<tr>
<td>Student Research Project 'Computational Analysis of Structures'</td>
<td>T-BGU-100174</td>
</tr>
</tbody>
</table>
7. Appendix: Curriculum by example .. 407
1 Preliminary remarks

The module handbook is the document in which important additional information about the studies is described. The general rules from the examination regulation (s. https://www.sle.kit.edu/english/vorstudium/master-civil-engineering.php; in German) and the structure of the program are specified by the curriculum (Chapt. 2). The main function of the Module Handbook is the compilation of the module descriptions (Chapt. 5) and the learning controls (Chapt. 6).

In addition to the module handbook information about the single courses (execution, content, etc.) is collected within the course catalog. Links to the courses (online) are given with the learning controls (Chapt. 6). The course language is indicated in the module tables (Chapt. 2) and partly in the course catalog (online). Information about the examinations is provided by the self-service function for students. This information is also announced by postings and web pages of the institutes.

Hints concerning Corona pandemic:

The descriptions in this module handbook are not adapted to the rules concerning the Corona pandemic. Important information about the current rules are found on the webpage of the Corona Crisis Unit, http://www.kit.edu/kit/english/25911.php, in the section 'Studying and Teaching'. This will be updated regularly during the period of the pandemic.

Information about the offered mode of the single courses, in presence or online, are found in the online course catalog. Please note: Not all this information was up to date when the module handbook was published. In the linked ILIAS course further information about the procedure and content of the course is provided.

Publisher:

KIT Department of Civil Engineering, Geo and Environmental Sciences
Karlsruhe Institute of Technology (KIT)
76128 Karlsruhe

Photographs:

Martin Fenchel

Contact:

ulf.mohrlok@kit.edu
2 Curriculum

In this section 'Curriculum' rules in addition to the examination regulation (ER/SPO) and their amendment statutes are described. These can be found on

(2017 KIT 011 Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Bauingenieurwesen; in German)

(2020 KIT 049 Satzung des Karlsruher Instituts für Technologie (KIT) über die Änderung der Studien- und Prüfungsordnungen zur Anwendbarkeit der Satzung des Karlsruher Instituts für Technologie (KIT) zur Durchführung von Erfolgskontrollen im Antwort-Wahl-V., Artikel 38; in German)

(2021 KIT 012 Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Bauingenieurwesen; in German)

2.1 Objectives of the master degree program

The master degree program Civil Engineering provides a deepened and research-oriented qualification in all typical professional fields of civil engineering. The main component of the qualification is the engineering applications of the qualifications acquired during the bachelor studies added by advanced and extended knowledge in at least two of the five study focuses 'Structural Engineering', 'Water and Environment', 'Mobility and Infrastructure', 'Technology and Management in Construction' and 'Geotechnical Engineering'.

The graduates are able to apply self-reliantly their scientific profound and interdisciplinary knowledge and methods in the fields of system analysis, measurement techniques, modeling and management also across disciplines. They evaluate their significance and scope for the solution of complex scientific and societal problems. They develop innovative problem solutions beyond the application of established structurally engineered and scientific rules, and enter new fields of engineering. Because of the increasing complexity of these problems they develop overall economic, socially and ecologically acceptable solutions within an interdisciplinary team.

They have the capability to present technically complex issues understandably and to perform convincingly which let them also be prepared very well for executive functions - also in an interdisciplinary team. They are qualified for responsible activities in planning offices and consultants, industry, administration and science. They obtain the qualification for Ph.D. studies as well.
2.2 Structure of the master degree program

The master degree program Civil Engineering comprises 120 credit points (CP). It is structured in a compulsory elective section, the Focus Studies (60 CP), a compulsory section, the Supplementary Studies (30 CP), and the Master's Thesis (30 CP; comp. ER/SPO § 19). Within the Focus Studies two of the five subject-related Study Focuses

I. Construction Engineering
II. Water and Environment
III. Mobility and Infrastructure
IV. Technology and Management in Construction
V. Geotechnical Engineering

have to be selected as compulsory elective subjects. These represent the different characteristics of the occupational profile. They comprise 30 CP each and are structured differently regarding the assigned compulsory modules (PM) and compulsory elective modules (SM). All modules in the master degree program comprise 6 CP each and are integrated into these subject-related study focuses (s. Tab. 1 - 5) as described in the following sections.

The Supplementary Studies comprises the two compulsory subjects Subject-Specific Supplements (24 CP) and Interdisciplinary Qualifications (6 CP). Within the subject Subject-Specific Supplements all modules not already elected from all study focuses can be selected freely. In order to obtain the interdisciplinary qualifications basically courses from the respective course catalog on key competences offered by the House of Competence (HoC) or of the Centre for Cultural and General Studies (ZAK) or language courses of the 'Sprachenzentrum' (SpZ, center of language studies) can be selected freely.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus Studies (compulsory elective)</td>
<td></td>
<td></td>
<td>Master's Thesis</td>
</tr>
<tr>
<td>selection of one Study Focus, 5 modules of 6 CP each (variable number fixed and selectable respectively):</td>
<td></td>
<td></td>
<td>30 CP</td>
</tr>
<tr>
<td>Construction Engineering (SF 1)</td>
<td></td>
<td></td>
<td>in one of the selected focuses:</td>
</tr>
<tr>
<td>Water and Environment (SF 2)</td>
<td></td>
<td></td>
<td>duration of preparation:</td>
</tr>
<tr>
<td>Mobility and Infrastructure (SF 3)</td>
<td></td>
<td></td>
<td>6 months</td>
</tr>
<tr>
<td>Technology and Management in Construction (SF 4)</td>
<td></td>
<td></td>
<td>completion by presentation</td>
</tr>
<tr>
<td>Geotechnical Engineering (SF 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | **Interdisciplinary Qualifications** 6 CP |
| | | | (selectable out of the offer of HoC, ZAK and SpZ) |

Supplementary Studies (compulsory)		
Subject-Specific Supplements:		
subject-specific modules freely selectable		

| | | | **Additional Accomplishments:** max. 30 CP |
| Additional Studies | | | freely selectable out of the entire course offer of KIT |
2.2.1 Study Focus 'Construction Engineering' (SF 1)

Civil engineers working in construction engineering are dealing with planning, design and calculation of structures and structural designs of all kinds. The graduates of the study focus 'Construction Engineering' are able to design, plan and calculate structures and structural designs independently considering technological, ecological and economic aspects by means of their broad knowledge about building material properties and designing approaches.

All modules offered in the study focus 'Construction Engineering' are summarized in Table 1. This table provides also information in which semester the associated courses and how the course assessment take place.

In this study focus three compulsory modules are predetermined:
- Design and Construction of Components in Reinforced Concrete
- Steel and Composite Structures
- Surface Structures and Dynamics of Structures

In addition, two compulsory elective modules, study focus modules, have to be selected (s. Tab. 1).

For several modules recommendations are given which modules should be taken in advance or in parallel. As part of several courses numerous field trips are offered. It is recommended to attend at least one field trip.
Table 1: Modules in Study Focus Construction Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CP</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Name (Language)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

compulsory modules:

M1P1: Design and Construction of Components in Reinforced Concrete 6 Design and Construction of Components in Reinforced Concrete (G) L/E 2/2 ngA wE 2 4
M1P2: Steel and Composite Structures 6 Steel and Composite Structures (G) L/E 2/2 ngA wE 2 4
M1P3: Surface Structures and Dynamics of Structures 6 Surface Structures (G) L 2 ngA wE 1 2 Dynamics of Structures *) (G) L 2 ngA wE 1 2

Sum compulsory modules 18

compulsory elective modules:

M1S01: Bracing and Stability in Reinforced Concrete 6 Bracing and Stability in Reinforced Concrete (G) L/E 2/2 wE 6
M1S02: Basics of Prestressed Concrete 6 Basics of Prestressed Concrete (G) L/E 2/2 wE 6
M1S03: Solid Construction Bridges 6 Solid Construction Bridges (G) L/E 2/2 wE 6
M1S04: Applied Dynamics of Structures 1) 6 Applied Dynamics of Structures (G) L/E 1/1 wE 6 Earthquake Engineering**) (G) L/E 1/1
M1S06: Material Science, Welding and Fatigue 6 Material Science, Welding and Fatigue (G) L/E 4 wE 6
M1S07: Construction of Steel and Composite Bridges 6 Construction of Steel and Composite Bridges (G) L/E 2/2 wE 6
M1S08: Hollow Section Structures 6 Hollow Section Structures (G) L/E 2/2 oE 6
M1S09: Glass, Plastic and Cable Structures 6 Glass, Plastic and Cable Structures (G) L/E 3/1 oE 6
M1S11: Building Preservation of Steel and Timber Structures 5a) 6 Building Preservation in Steel Structures (G) L 2 wE 3 Building Preservation in Timber Structures (G) L/E 2 wE 3
M1S12: Timber Structures 6 Timber Structures (G) L/E 2/2 wE 6
M1S14: Non-linear Analysis of Beam Structures 6 Non-linear Analysis of Beam Structures (G) L/E 2/2 wE 6
M1S15: Computational Analysis of Structures 6 Computational Analysis of Structures (G) L/E 2/2 ngA 6) oE 2 4
M1S16: FE-Applications in Practical Engineering 6 FE-Applications in Practical Engineering (G) L/E 2/2 oE 6
M1S17: Shell Structures and Stability of Structures 6 Shell Structures (G) L/E 1/1 ngA 6) oE 2 4 Stability of Structures (G) L/E 1/1
M1S18: Numerical Methods in Structural Analysis 6 Numerical Methods in Structural Analysis (G) L/E 2/2 oE 6
M1S19: Non-linear Analysis of Surface Structures 6 Non-linear Analysis of Surface Structures (G) L/E 2/2 oE 6
M1S20: Basics of Finite Elements 6 Basics of Finite Elements (G) L/E 2/2 ngA oE 1 5
M1S21: Fracture and Damage Mechanics 6 Fracture and Damage Mechanics (G) L/E 2/2 oE 6

(continuing next page)

*) Practical course Dynamics of Structure recommended as supplementary additional accomplishment

**) Course was not offered in winter term 2021/22.
Table 1: Modules in Study Focus Construction Engineering (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CP</th>
<th>Name (Language)</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1S24</td>
<td>Concrete Construction Technology</td>
<td>6</td>
<td>Concrete Technology (G)</td>
<td>L/E</td>
<td>3</td>
<td>oE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deformation and Fracture Processes (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M1S25</td>
<td>Durability and Service Life Design</td>
<td>6</td>
<td>Corrosion Processes and Life Time (G)</td>
<td>L/E</td>
<td>3</td>
<td>oE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analytic Methods (D)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M1S26</td>
<td>Building Preservation of Concrete and Masonry Constructions</td>
<td>6</td>
<td>Protection, Rehabilitation and Reinforcement of Concrete and Masonry Constructions (G)</td>
<td>L/E</td>
<td>2/1</td>
<td>ngA 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Building Analysis (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M1S27</td>
<td>Building Physics I</td>
<td>6</td>
<td>Applied Building Physics (G)</td>
<td>L</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Building Technology (G)</td>
<td>L</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td>M1S28</td>
<td>Building Physics II</td>
<td>6</td>
<td>Practical Noise Control (G)</td>
<td>L</td>
<td>2</td>
<td>EoT 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical Fire Protection (G)</td>
<td>L</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td>M1S29</td>
<td>Materials Testing and Measuring Techniques</td>
<td>6</td>
<td>Measuring Techniques in Construction Engineering (G)</td>
<td>L/E</td>
<td>1/1</td>
<td>oE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Materials Testing in the Field of Concrete (G)</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M1S32</td>
<td>Continuum Mechanics of Heterogeneous Solids [2,4]</td>
<td>6</td>
<td>Continuum Mechanics (G)</td>
<td>L</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Micromechanics of Heterogeneous Solids (G)</td>
<td>L</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td>M1S37</td>
<td>Finite Elements in Solid Mechanics</td>
<td>6</td>
<td>Finite Elements in Solid Mechanics (G)</td>
<td>L/E</td>
<td>2/2</td>
<td>oE 6</td>
</tr>
<tr>
<td>M1S38</td>
<td>Numerical Structural Dynamics</td>
<td>6</td>
<td>Numerical Structural Dynamics (G)</td>
<td>L/E</td>
<td>4</td>
<td>oE 6</td>
</tr>
<tr>
<td>M1S39</td>
<td>Tank Construction</td>
<td>6</td>
<td>Tank Construction (G)</td>
<td>L/E</td>
<td>3/1</td>
<td>EoT 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1S40</td>
<td>Modeling in Solid Mechanics</td>
<td>6</td>
<td>Modeling in Solid Mechanics (G)</td>
<td>L/E</td>
<td>4</td>
<td>oE 6</td>
</tr>
<tr>
<td>M1S41</td>
<td>Contact Mechanics</td>
<td>6</td>
<td>Contact Mechanics (G)</td>
<td>L/E</td>
<td>2/2</td>
<td>oE 6</td>
</tr>
<tr>
<td>M1S42</td>
<td>Digital Planning and Building Information Modeling</td>
<td>6</td>
<td>Digital Planning and Building Information Modeling (G)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>M1S43</td>
<td>Design and Construction in Metal and Lightweight Structures [5a]</td>
<td>6</td>
<td>Design and Construction in Metal and Lightweight Structures (G)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>M1S44</td>
<td>Timber Structures: Materials and Appropriate Design [5b]</td>
<td>6</td>
<td>Timber Structures: Materials and Appropriate Design (G)</td>
<td>L/E</td>
<td>4</td>
<td>oE 6</td>
</tr>
<tr>
<td>M1S45</td>
<td>Innovations and Developments in Steel and Timber Structures [5c]</td>
<td>6</td>
<td>Innovations and Developments in Metal and Lightweight Structures (G)</td>
<td>L/E</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Innovations and Developments Timber Structures (G)</td>
<td>L/E</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td>M1S46</td>
<td>Building Preservation and Innovations in Metal and Lightweight Structures [5d]</td>
<td>6</td>
<td>Building Preservation in Steel Structures (G)</td>
<td>L/E</td>
<td>2</td>
<td>wE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Innovations and Developments in Metal and Lightweight Structures (G)</td>
<td>L/E</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td>M1S47</td>
<td>Building Preservation and Innovations in Timber Structures [5d]</td>
<td>6</td>
<td>Building Preservation in Timber Structures (G)</td>
<td>L/E</td>
<td>2</td>
<td>wE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Innovations and Developments Timber Structures (G)</td>
<td>L/E</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td>M1S48</td>
<td>Uncertainty Modeling, Artificial Neural Networks and Optimization in Structural Analysis [3]</td>
<td>6</td>
<td>Structural Analysis with Uncertain Data (G)</td>
<td>L</td>
<td>2</td>
<td>oE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Artificial Neural Networks in Structural Analysis (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Structural Optimization (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sum compulsory elective modules</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LC:
- **W:** Wichtige (important)
- **S:** Stärkere (stronger)
- **EoT:** Einzelrichtung (specialization)
- **oE:** Optionale (optional)
- **ngA:** Nicht obligatorisch, aber auf Empfehlung des Studierenden durchzuführen (not obligatory, but recommended by the student)
explanations to Table 1:

<table>
<thead>
<tr>
<th>general:</th>
<th>type of course:</th>
<th>type of learning control:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1PX</td>
<td>Study Focus I, compulsory modules</td>
<td>L</td>
</tr>
<tr>
<td>M1SXX</td>
<td>Study Focus I, compulsory elective modules</td>
<td>L/E</td>
</tr>
<tr>
<td>LC</td>
<td>learning control</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>credit point</td>
<td></td>
</tr>
<tr>
<td>HpW / SWS</td>
<td>hours per week</td>
<td></td>
</tr>
<tr>
<td>W / S</td>
<td>winter term / summer term</td>
<td></td>
</tr>
<tr>
<td>G / E</td>
<td>language German / English</td>
<td></td>
</tr>
<tr>
<td>1)</td>
<td>Starting the module in summer term (S) is recommended.</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>Starting the module in winter term (W) is recommended.</td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>Module will be offered newly as from summer term 2022.</td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>Module must not be selected together with module M5P4 (SF 5).</td>
<td></td>
</tr>
<tr>
<td>5a)</td>
<td>Module must not be selected together with the module M1S10 not offered anymore.</td>
<td></td>
</tr>
<tr>
<td>5b)</td>
<td>Module must not be selected together with the modules M1S10 and M1S13 not offered anymore.</td>
<td></td>
</tr>
<tr>
<td>5c)</td>
<td>Module must not be selected together with the modules M1S46 and M1S47.</td>
<td></td>
</tr>
<tr>
<td>5d)</td>
<td>Module must not be selected together with the modules M1S11 and M1S45.</td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td>Module must not be selected together with the module M1S10 not offered anymore.</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{wE} \quad \text{written examination}\]
\[\text{oE} \quad \text{oral examination}\]
\[\text{EoT} \quad \text{examination of other type}\]
\[\text{ngA} \quad \text{not graded accomplishment}\]
\[\text{ngA} \quad \text{not graded accomplishment as examination prerequisite}\]
2.2.2 Study Focus 'Water and Environment' (SF 2)

Civil engineers working in water management and environmental engineering are dealing with the management of water resources, their interaction with soil and air as well as the handling of waste and waste water. The graduates of the study focus 'Water and Environment' can develop efficient and adapted solutions for problems of any kind in water management based on a deepened understanding of fluid mechanical processes on water and mass transport as well as methods for their quantification.

All modules offered in the study focus 'Water and Environment' are summarized in Table 2. This table provides also information in which semester the associated courses and how the course assessment take place.

<table>
<thead>
<tr>
<th>Study Focus Water and Environment (SF 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 PM out of 5 PM have to be selected:</td>
</tr>
<tr>
<td>PM1 - M2P9 - Advanced Fluid Mechanics</td>
</tr>
<tr>
<td>SS</td>
</tr>
<tr>
<td>PM2 - M2P5 - Numerical Fluid Mechanics</td>
</tr>
<tr>
<td>WS</td>
</tr>
<tr>
<td>PM3 - M2P6 - Hydraulic Engineering</td>
</tr>
<tr>
<td>SS</td>
</tr>
<tr>
<td>PM4 - M2P10 - Urban Water Infrastructure and Management</td>
</tr>
<tr>
<td>WS</td>
</tr>
<tr>
<td>PM5 - M2P8 - Water and Energy Cycles</td>
</tr>
<tr>
<td>WS</td>
</tr>
</tbody>
</table>

2 SM have to be selected from M2S01 - M2S48 or M2P5 - M2P10, if not already selected as PM (s. Tab. 2):

- compulsory elective module 1
- compulsory elective module 2

In this study focus five compulsory modules are predetermined:
- Advanced Fluid Mechanics
- Numerical Fluid Mechanics
- Hydraulic Engineering
- Urban Water Infrastructure and Management
- Water and Energy Cycles

At least three out of these five compulsory modules have to be selected. In case of selecting less than five compulsory modules the respective number of compulsory elective modules, study focus modules, have to be selected (s. Tab 2).
Table 2: Modules in Study Focus Water and Environment

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CP</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>Type</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(bau)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>compulsory modules *): 3 compulsory modules have to be selected, in total 18 CP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2P5:</td>
<td>Numerical Fluid Mechanics *)</td>
<td>6</td>
<td>Numerical Fluid Mechanics (E)</td>
<td>L/E</td>
<td>4</td>
<td>wE</td>
<td>6</td>
</tr>
<tr>
<td>M2P6:</td>
<td>Hydraulic Engineering *)</td>
<td>6</td>
<td>River Engineering (E)</td>
<td>L/E</td>
<td>2</td>
<td>ngA</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Design of Hydraulic Structures (E)</td>
<td>L/E</td>
<td>2</td>
<td>ngA</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2P8:</td>
<td>Water and Energy Cycles *)</td>
<td>6</td>
<td>Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management (E)</td>
<td>L/E</td>
<td>4</td>
<td>EoT</td>
<td>6</td>
</tr>
<tr>
<td>M2P10:</td>
<td>Urban Water Infrastructure and Management *)</td>
<td>6</td>
<td>Urban Water Infrastructure and Management (E)</td>
<td>L/E</td>
<td>4</td>
<td>wE</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sum compulsory modules</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>compulsory elective modules *): At least 2 modules out of the compulsory elective modules and the not already selected compulsory modules have to be selected, in total 12 CP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2S03:</td>
<td>Subsurface Flow and Contaminant Transport</td>
<td>6</td>
<td>Transport and Transformation of Contaminants in Hydrological Systems (E)</td>
<td>L/E</td>
<td>4</td>
<td>oE</td>
<td>6</td>
</tr>
<tr>
<td>M2S04:</td>
<td>Analysis of Spatial Data</td>
<td>6</td>
<td>Geostatistics (E)</td>
<td>L/E</td>
<td>4</td>
<td>oE</td>
<td>6</td>
</tr>
<tr>
<td>M2S05:</td>
<td>Hydrological Measurements in Environmental Systems</td>
<td>6</td>
<td>Hydrological Measurements in Environmental Systems (E)</td>
<td>PE</td>
<td>4</td>
<td>EoT</td>
<td>6</td>
</tr>
<tr>
<td>M2S07:</td>
<td>Environmental Communication</td>
<td>6</td>
<td>Environmental Communication 2) (G)</td>
<td>S</td>
<td>2</td>
<td>ngA</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>EoT</td>
<td>6</td>
</tr>
<tr>
<td>M2S08:</td>
<td>Groundwater Management 1)</td>
<td>6</td>
<td>Groundwater Hydraulics (E)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Numerical Groundwater Modeling (E)</td>
<td>Pj</td>
<td>2</td>
<td>EoT</td>
<td>3</td>
</tr>
<tr>
<td>M2S11:</td>
<td>Hydro Power Engineering</td>
<td>6</td>
<td>Hydro Power Engineering (G)</td>
<td>L/E</td>
<td>4</td>
<td>oE</td>
<td>6</td>
</tr>
<tr>
<td>M2S12:</td>
<td>Waterway Engineering</td>
<td>6</td>
<td>Waterway Engineering (G)</td>
<td>L/E</td>
<td>4</td>
<td>ngA</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>oE</td>
<td>5</td>
</tr>
<tr>
<td>M2S17:</td>
<td>Technical Hydraulics 3)</td>
<td>6</td>
<td>Steady and Unsteady-state Operation of Hydraulic Systems (G)</td>
<td>L/E</td>
<td>4</td>
<td>wE</td>
<td>6</td>
</tr>
<tr>
<td>M2S19:</td>
<td>Environmental Fluid Mechanics</td>
<td>6</td>
<td>Environmental Fluid Mechanics (E)</td>
<td>L/E</td>
<td>4</td>
<td>wE</td>
<td>6</td>
</tr>
<tr>
<td>M2S21:</td>
<td>Advanced Computational Fluid Dynamics</td>
<td>6</td>
<td>Numerical Fluid Mechanics II (E)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parallel Programming Techniques for Engineering Problems (E)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
<td>3</td>
</tr>
<tr>
<td>M2S33:</td>
<td>Project Studies in Water Resources Management</td>
<td>6</td>
<td>Project Studies in Water Resources Management (G)</td>
<td>L/E</td>
<td>4</td>
<td>EoT</td>
<td>6</td>
</tr>
<tr>
<td>M2S35:</td>
<td>Flow and Sediment Dynamics in Rivers 3)</td>
<td>6</td>
<td>Morphodynamics (E)</td>
<td>L/E</td>
<td>2</td>
<td>ngA</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flow Behavior of Rivers (E)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
<td>4</td>
</tr>
<tr>
<td>M2S36:</td>
<td>Hydraulic Structures 5a)</td>
<td>6</td>
<td>Groundwater Flow around Structures**) (E)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interaction Flow - Hydraulic Structures (E)</td>
<td>L/E</td>
<td>2</td>
<td>wE</td>
<td>3</td>
</tr>
<tr>
<td>M2S37:</td>
<td>Experimental Hydraulics and Measuring Techniques</td>
<td>6</td>
<td>Flow Measurement Techniques (E)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Experimental Hydraulics II (G)</td>
<td>L/E</td>
<td>2</td>
<td>EoT</td>
<td>3</td>
</tr>
<tr>
<td>M2S38:</td>
<td>Water Distribution Systems</td>
<td>6</td>
<td>Water Distribution Systems (E)</td>
<td>L/E</td>
<td>4</td>
<td>ngA</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>oE</td>
<td>4</td>
</tr>
</tbody>
</table>

(continuing next page)

**) Course will not be offered in summer term 2022.
<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CP</th>
<th>Course</th>
<th>Type</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2S39:</td>
<td>Experiments in Fluid Mechanics</td>
<td>6</td>
<td>Experiments in Fluid Mechanics (E)</td>
<td>L/E</td>
<td>4 EoT 6</td>
</tr>
<tr>
<td>M2S41:</td>
<td>Freshwater Ecology</td>
<td>6</td>
<td>Applied Ecology and Water Quality (E)</td>
<td>L/S</td>
<td>3 EoT 3</td>
</tr>
<tr>
<td>M2S42:</td>
<td>River Basin Modeling ¹</td>
<td>6</td>
<td>Field Training Water Quality (E)</td>
<td>E</td>
<td>1 EoT 3</td>
</tr>
<tr>
<td>M2S43:</td>
<td>Wastewater Treatment Technologies</td>
<td>6</td>
<td>Wastewater Treatment Technologies (E)</td>
<td>L/E</td>
<td>4 ngA ⁷ 3</td>
</tr>
<tr>
<td>M2S44:</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning</td>
<td>6</td>
<td>Introduction to Environmental Data Analysis and Statistical Learning (E)</td>
<td>L/E</td>
<td>4 ngA ⁷ wE 4</td>
</tr>
<tr>
<td>M2S47:</td>
<td>Interaction Flow - Building Structure ⁵b</td>
<td>6</td>
<td>Interaction Flow - Hydraulic Structures (E)</td>
<td>L/E</td>
<td>2 wE 3</td>
</tr>
<tr>
<td>M2S49:</td>
<td>River Processes ⁴,⁶</td>
<td>6</td>
<td>Landscape and River Morphology (E)</td>
<td>L/E</td>
<td>2 EoT 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transport Processes in Rivers (E)</td>
<td>L/E</td>
<td>2</td>
</tr>
<tr>
<td>Sum compulsory elective modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138 38 56</td>
</tr>
</tbody>
</table>

explanations to Table 2:

- **general:**
 - M2PX: Study Focus II, compulsory modules
 - M2SXX: Study Focus II, compulsory elective modules
 - LC: learning control
 - CP: credit point
 - HpW / SWS: hours per week
 - W / S: winter term / summer term
 - G / E: language German / English
 - ¹: Starting the module in summer term (S) is recommended.
 - ²: Course is offered every semester.
 - ³: Module will not be offered anymore as from summer term 2022.
 - ⁴: Module will be offered newly as from summer term 2022.
 - ⁵: Module must not be selected together with the modules M2S16 not offered anymore and M2S47.
 - ⁶: Module must not be selected together with the modules M2S16 not offered anymore and M2S36.
 - ⁷: Module must not be selected together with the module M2S35 not offered anymore.

- **type of course:**
 - L: lecture
 - L/E: lecture and exercise, separate or integrated
 - L/S: lecture and seminar integrated
 - E: exercise
 - S: seminar
 - PE: practical exercise
 - Pj: project

- **type of learning control:**
 - wE: written examination
 - oE: oral examination
 - EoT: examination of other type
 - ngA: not graded accomplishment as examination prerequisite
2.2.3 Study Focus 'Mobility and Infrastructure' (SF 3)

Civil Engineers working in urban, regional and federal state planning or transportation, highway engineering and railroad are dealing with the provision and maintenance of transportation infrastructure. The graduates of the study focus 'Mobility and Infrastructure' are able to design, construct and operate transportation systems under logistical, ecological and socio-economic aspects by means of deepened knowledge of the interrelationships between urban planning, regional planning, mobility behavior and required infrastructure.

All modules offered in the study focus 'Mobility and Infrastructure' are summarized in Table 3. This table provides also information in which semester the associated courses and how the course assessment take place.

<table>
<thead>
<tr>
<th>Study Focus</th>
<th>Mobility and Infrastructure (SF 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM1</td>
<td>M3P1 - Urban and Regional Planning</td>
</tr>
<tr>
<td></td>
<td>WS</td>
</tr>
<tr>
<td>PM2</td>
<td>M3P2 - Models and Methods in Traffic Engineering and Transportation Planning</td>
</tr>
<tr>
<td></td>
<td>WS</td>
</tr>
<tr>
<td>PM3</td>
<td>M3P3 - Infrastructure Management</td>
</tr>
<tr>
<td></td>
<td>SS</td>
</tr>
<tr>
<td>PM4</td>
<td>M3P5 - Laws and Proceedings concerning Traffic and Roads</td>
</tr>
<tr>
<td></td>
<td>SS</td>
</tr>
<tr>
<td>PM5</td>
<td>M3P6 - City Transport Facilities</td>
</tr>
<tr>
<td></td>
<td>WS</td>
</tr>
</tbody>
</table>

2 SM have to be selected from M3S01 - M3S23 or M3P1 - M3P6, if not already selected as PM (s. Tab. 3):

<table>
<thead>
<tr>
<th>SM1</th>
<th>compulsory elective module 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 CP</td>
</tr>
<tr>
<td>SM2</td>
<td>compulsory elective module 2</td>
</tr>
<tr>
<td></td>
<td>6 CP</td>
</tr>
</tbody>
</table>

In this study focus five compulsory modules are predetermined:

- Urban and Regional Planning
- Models and Methods in Traffic Engineering and Transportation Planning
- Infrastructure Management
- Laws and Proceedings concerning Traffic and Roads
- City Transport Facilities

At least three out of these five compulsory modules have to be selected. In case of selecting less than five compulsory modules the respective number of missing modules have to be selected from the offer of this study focus (Tab. 3).

Students selecting the study focus ‘Mobility and Infrastructure’ are recommended to attend one field trip of several days’ duration. Normally, this takes place annually in the week following the Whitsun holidays.
<table>
<thead>
<tr>
<th>Module</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3P1: Urban and Regional Planning *)</td>
<td>6</td>
</tr>
<tr>
<td>M3P2: Models and Methods in Traffic Engineering and Transportation Planning *)</td>
<td>6</td>
</tr>
<tr>
<td>M3P3: Infrastructure Management *)</td>
<td>6</td>
</tr>
<tr>
<td>M3P5: Laws and Proceedings concerning Traffic and Roads *)</td>
<td>6</td>
</tr>
<tr>
<td>M3P6: (M3S17) City Transport Facilities *)</td>
<td>6</td>
</tr>
</tbody>
</table>

compulsory modules *): 3 compulsory modules have to be selected, in total 18 CP.

<table>
<thead>
<tr>
<th>Module</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3S01: Urban Renewal</td>
<td>6</td>
</tr>
<tr>
<td>M3S02: Space and Infrastructure</td>
<td>6</td>
</tr>
<tr>
<td>M3S03: Traffic Management and Simulation Methods</td>
<td>6</td>
</tr>
<tr>
<td>M3S04: Planning of Transportation Systems</td>
<td>6</td>
</tr>
<tr>
<td>M3S05: Highway Design</td>
<td>6</td>
</tr>
<tr>
<td>M3S06: Road Construction</td>
<td>6</td>
</tr>
<tr>
<td>M3S09: Project Integrated Planning 1)</td>
<td>6</td>
</tr>
<tr>
<td>M3S11: Intermodality in Freight, Long-distance and Air Transport</td>
<td>6</td>
</tr>
<tr>
<td>M3S12: Road Safety</td>
<td>6</td>
</tr>
</tbody>
</table>

compulsory elective modules *): At least 2 modules out of the compulsory elective modules and the not already selected compulsory modules have to be selected, in total 12 CP.

Course is offered exceptionally in winter term 2021/22.
Table 3: Modules in Study Focus Mobility and Infrastructure (continued)

<table>
<thead>
<tr>
<th>Code (baur)</th>
<th>Name</th>
<th>Cp</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3S13:</td>
<td>Special Topics in Highway Engineering</td>
<td>6</td>
<td>Technical and Economic Management Tools in Highway Engineering (G)</td>
<td>L</td>
<td>2</td>
<td>oE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Simulations and Analysis Methods in Highway Engineering (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Special Topics in Highway Engineering (D)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M3S18:</td>
<td>Track Guided Transport Systems - Operation and Capacity</td>
<td>6</td>
<td>Operation Track Guided Systems (G)</td>
<td>L</td>
<td>2</td>
<td>wE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Operation Systems and Track Guided Infrastructure Capacity (G)</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M3S20:</td>
<td>Analysis and Evolution of Mobility</td>
<td>6</td>
<td>Transportation Data Analysis (G)</td>
<td>L/E</td>
<td>2</td>
<td>oE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mobility Services and new Forms of Mobility (G)</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M3S22:</td>
<td>Special Issues of Public Transport</td>
<td>6</td>
<td>Tendering, Planning and Financing in Public Transport (G)</td>
<td>L</td>
<td>2</td>
<td>oE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seminar in Transportation (G)</td>
<td>S</td>
<td>2</td>
<td>EoT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Information Management for Public Mobility Services (G)</td>
<td>L/E</td>
<td>2</td>
<td>EoT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sustainability in Mobility Systems (G)</td>
<td>L</td>
<td>2</td>
<td>wE</td>
</tr>
</tbody>
</table>

Sum compulsory elective modules 84

explanations to Table 3:

general:
- M3PX Study Focus III, compulsory modules
- M3SXX Study Focus III, compulsory elective modules
- LC learning control
- CP credit point
- HpW / SWS hours per week
- W / S winter term / summer term
- G / E language German / English

1) Taking this module in the first semester is not recommended.
2) Two of these courses with the related learning controls have to be selected.
3) Course is offered every semester.

<table>
<thead>
<tr>
<th>type of course:</th>
<th>type of learning control:</th>
</tr>
</thead>
<tbody>
<tr>
<td>L lecture</td>
<td>wE written examination</td>
</tr>
<tr>
<td>L/E lecture and exercise, separate or integrated seminar</td>
<td>oE oral examination</td>
</tr>
<tr>
<td>S seminar</td>
<td>EoT examination of other type</td>
</tr>
<tr>
<td>Pj project</td>
<td>ngA 4) not graded accomplishment as examination prerequisite</td>
</tr>
</tbody>
</table>

Civil Engineering (Master of Science (M.Sc.), ER/SPO 2017)
Module Handbook as of 09/03/2022
2.2.4 Study Focus 'Technology and Management in Construction' (SF 4)

Civil engineers working in construction management are dealing comprehensively with the life cycle of a building from planning to construction to demolition at the end of utilization. The graduates of the study focus 'Technology and Management in Construction' can apply specifically their deepened knowledge in project management, process engineering and economics in construction operation as well as their knowledge in methods of project development and facility management for the solution of all problems, in order to realize optimally buildings in all fields of civil engineering by means of their broad understanding of the legal, economic and technical interrelationships.

All modules offered in the study focus 'Technology and Management in Construction' are summarized in Table 4. This table provides also information in which semester the associated courses and how the course assessment take place.

In this study focus four compulsory modules are predetermined:

- Project Management in Construction and Real Estate Industry
- Machinery and Process Engineering
- Production Planning and Control in Construction
- Sustainability in Real Estate Management

In addition, one compulsory elective module, study focus module, has to be selected (s. Tab. 4).

Beside numerous field trips as part of several lectures a one day field trip takes place annually at the beginning of the winter term. The attendance at this fall field trip is obligatory for students selected the study focus 'Technology and Management in Construction' (SF 4).

Furthermore, a 'large' field trip of several days’ duration is offered also annually in the week following the Whitsun holidays. All students planning to prepare their master's thesis in this study focus shall attend this once.
Table 4: Modules in Study Focus Technology and Management in Construction

<table>
<thead>
<tr>
<th>Code (baur)</th>
<th>Name</th>
<th>CP</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory modules:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4P3:</td>
<td>Economics and Management in Construction 1.5a)</td>
<td>6</td>
<td>Cost Estimation (G)</td>
<td>L/E</td>
<td>2</td>
<td>ngA 1 wE 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Building Laws (G)</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M4P4:</td>
<td>Sustainability in Real Estate Management</td>
<td>6</td>
<td>Sustainability in Real Estate Management (G)</td>
<td>L/E</td>
<td>2</td>
<td>wE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Real Estate Life Cycle Management (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Facility and Real Estate Management II (D)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M4P5:</td>
<td>Project Management in Construction and Real Estate Industry</td>
<td>6</td>
<td>Project Management in Construction and Real Estate Industry (G)</td>
<td>L/E</td>
<td>4</td>
<td>ngA EoT 1 wE 5</td>
</tr>
<tr>
<td>M4P6:</td>
<td>Machinery and Process Engineering</td>
<td>6</td>
<td>Construction Equipment (G)</td>
<td>L</td>
<td>2</td>
<td>ngA 1 wE 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Process Engineering (G)</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M4P7:</td>
<td>Production Planning and Control in Construction 4.5b)</td>
<td>6</td>
<td>Site Management (G)</td>
<td>L</td>
<td>1</td>
<td>ngA 1 wE 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Site Planning and Handling (G)</td>
<td>L/E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sum compulsory modules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>compulsory elective modules:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4S01: Business and Human Resource Management 1.6a)</td>
<td>6</td>
<td>Business and Human Resources (G)</td>
<td>L/E</td>
<td>3</td>
<td>wE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Site Management (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4S06: Environmentally-friendly Recycling and Disassembly of Buildings</td>
<td>6</td>
<td>Project Studies (G)</td>
<td>L/E</td>
<td>2</td>
<td>oE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Disassembly Process Engineering (G)</td>
<td>L/E</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4S07: Upgrading of Existing Buildings and Energetic Refurbishment</td>
<td>6</td>
<td>Upgrading of Existing Buildings (G)</td>
<td>L/E</td>
<td>3</td>
<td>EoT 1.5 wE 4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Energetic Refurbishment (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4S08: Real Estate Management</td>
<td>6</td>
<td>Controlling in Real Estate Management (G)</td>
<td>L</td>
<td>1</td>
<td>oE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basics of Real Estate Valuation (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Corporate Public and Real Estate Management (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Project Development with Case Study (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4S09: Lean Construction</td>
<td>6</td>
<td>Lean Construction (G)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 1.5 wE 4.5</td>
</tr>
<tr>
<td></td>
<td>M4S10: Advanced Studies in Construction Engineering</td>
<td>6</td>
<td>Tunnel Construction and Blasting Engineering (G)</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Operation Methods for Foundation and Marine Construction (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Operation Methods for Earthmoving (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4S12: Decommissioning of Nuclear Facilities</td>
<td>6</td>
<td>Removal and Decontamination of Nuclear Facilities (G)</td>
<td>L/E</td>
<td>2</td>
<td>oE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New Development and Optimization of Decommissioning Machine Technology (G)</td>
<td>L/E</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4S13: Facility Management in Hospitals and Hospital Management</td>
<td>6</td>
<td>Facility Management in Hospitals (G)</td>
<td>L/E</td>
<td>3</td>
<td>EoT 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hospital Management (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4S15: Turnkey Construction 1.7a)</td>
<td>6</td>
<td>Turnkey Construction I (G)</td>
<td>L</td>
<td>1</td>
<td>wE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Turnkey Construction II (G)</td>
<td>L/E</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Claim Management (G)</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(continuing next page)
Table 4: Modules in Study Focus Technology and Management in Construction (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CP</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Name (Language)</td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(baui)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>M4S16:</td>
<td>Building Information Modeling (BIM)</td>
<td>6</td>
<td>Building Information Modeling (BIM) (G)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>M4S17:</td>
<td>Research Seminar Construction Management</td>
<td>6</td>
<td>Research Seminar Construction Management I (G)</td>
<td>S</td>
<td>2</td>
<td>EoT 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Research Seminar Construction Management II (G)</td>
<td>S</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M4S18:</td>
<td>Equipement and special Construction Techniques in Building Practice</td>
<td>6</td>
<td>Equipement and special Construction Techniques in Building Practice I (D)</td>
<td>L</td>
<td>2</td>
<td>oE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Equipement and special Construction Techniques in Building Practice II (D)</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M4S19:</td>
<td>Digitalization in Facility and Real Estate Management</td>
<td>6</td>
<td>Digitalization in Facility and Real Estate Management (G)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>M4S20:</td>
<td>Digital Technologies in Field Information Modeling</td>
<td>6</td>
<td>Digital Technologies in Field Information Modeling (E)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>M4S21:</td>
<td>Digital Engineering and Construction</td>
<td>6</td>
<td>Digital Engineering and Construction (E)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>M4S22:</td>
<td>Leadership and Communication 2,6b)</td>
<td>6</td>
<td>Leadership and Communication (G)</td>
<td>L/E</td>
<td>4</td>
<td>wE 6</td>
</tr>
<tr>
<td>M4S23:</td>
<td>Real Estate und Facility Management - on Site Lectures 3)</td>
<td>6</td>
<td>Real Estate und Facility Management - on Site Lectures (G)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>M4S24:</td>
<td>Facility Management 3)</td>
<td>6</td>
<td>Facility Management III (G)</td>
<td>L/E</td>
<td>4</td>
<td>wE 6</td>
</tr>
<tr>
<td>M4S25:</td>
<td>Technology and Production Methods in Turnkey Construction and Civil Engineering Works 2,7b)</td>
<td>6</td>
<td>Turnkey Construction (G)</td>
<td>L/E</td>
<td>2</td>
<td>wE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Civil Engineering Structures and Regenerative Energies (G)</td>
<td>L/E</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M4S26:</td>
<td>Lean Integrated Project Delivery (Lean IPD) 4)</td>
<td>6</td>
<td>Lean Integrated Project Delivery (G)</td>
<td>L/E</td>
<td>3</td>
<td>EoT 3</td>
</tr>
<tr>
<td>M4S27:</td>
<td>Agile Projekt Management in Facility and Real Estate Management 4)</td>
<td>6</td>
<td>Agile Projekt Management in Facility and Real Estate Management (E)</td>
<td>L/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>M4S28:</td>
<td>Seminar Construction Machinery 2)</td>
<td>6</td>
<td>Seminar Construction Machinery (G)</td>
<td>S/E</td>
<td>4</td>
<td>EoT 6</td>
</tr>
<tr>
<td>Sum compulsory elective modules</td>
<td>120</td>
<td></td>
<td></td>
<td>44</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
explanations to Table 4:

general:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4PX</td>
<td>Study Focus IV, compulsory modules</td>
</tr>
<tr>
<td>M4SXX</td>
<td>Study Focus IV, compulsory elective modules</td>
</tr>
</tbody>
</table>

Learning Control (LC):

- **HpW** / **SWS** hours per week
- **W** / **S** winter term / summer term
- **G** / **E** language German / English

credit point (CP):

1) Module will not be offered anymore as from summer term 2022.
2) Module will be offered newly as from summer term 2022.
3) Module will be offered newly as from winter term 2022/23.
4) Module will be offered newly as from winter term 2023.
5a) Module must not be selected together with the module M4P7 offered newly.
5b) Module must not be selected together with the module M4P3 not offered anymore.
6a) Module must not be selected together with the module M4S22 offered newly.
6b) Module must not be selected together with the module M4S01 not offered anymore.
7a) Module must not be selected together with the module M4S25 offered newly.
7b) Module must not be selected together with the module M4S12 not offered anymore.

type of course:

- **L** lecture
- **L/E** lecture and exercise, separate or integrated
- **S** seminar

type of learning control:

- **wE** written examination
- **oE** oral examination
- **EoT** examination of other type
- **ngA** not graded

Civil Engineering (Master of Science (M.Sc.), ER/SPO 2017)

Module Handbook as of 09/03/2022
2.2.5 Study Focus ‘Geotechnical Engineering’ (SF 5)

Civil engineers working in geotechnics are dealing with all aspects of the interaction between (underground) structures or infrastructures and the surrounding soil or rock. The graduates of the study focus ‘Geotechnical Engineering’ are prepared very well for the interface of civil engineering and geosciences regarding problems of preservation, utilization and design of the ground as living and cultural space, in particular of planning, designing and constructing underground structures and infrastructure, by their broad professional expertise in material science and construction.

All modules offered in the study focus ‘Geotechnical Engineering’ are summarized in Table 5. This table provides also information in which semester the associated courses and how the course assessment take place.

Study Focus Geotechnical Engineering (SF 5)

5 PM are fixed:

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Semester</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5P1</td>
<td>Theoretical Soil Mechanics</td>
<td>SS</td>
<td>6</td>
</tr>
<tr>
<td>M5P2</td>
<td>Earthworks and Foundation Engineering</td>
<td>WS</td>
<td>6</td>
</tr>
<tr>
<td>M5P3</td>
<td>Rock Mechanics and Tunnelling</td>
<td>SS</td>
<td>6</td>
</tr>
<tr>
<td>M5P4</td>
<td>Basics in Numerical Modelling</td>
<td>WS</td>
<td>6</td>
</tr>
<tr>
<td>M5P5</td>
<td>Design and Construction of Components in Reinforced Concrete</td>
<td>WS</td>
<td>6</td>
</tr>
</tbody>
</table>

*) If PM5 is covered by selection of the Study Focus ‘Construction Engineering’ (SF 1), SM1 or SM2 has to be selected instead:

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Semester</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5S01</td>
<td>Special Issues of Soil Mechanics</td>
<td>SS</td>
<td>6</td>
</tr>
<tr>
<td>M5S02</td>
<td>Ground Investigation</td>
<td>SS</td>
<td>6</td>
</tr>
<tr>
<td>M5S03</td>
<td>Applied Geotechnics</td>
<td>SS</td>
<td>6</td>
</tr>
</tbody>
</table>

In this study focus five compulsory modules are predetermined:

- Theoretical Soil Mechanics
- Earthworks and Foundation Engineering
- Rock Mechanics and Tunnelling
- Basics in Numerical Modelling
- Design and Construction of Components in Reinforced Concrete

In case that the compulsory module Design and Construction of Components in Reinforced Concrete (M1P1) is already allocated by the selection of Construction Engineering (SF 1) as second study focus one of the compulsory elective modules M5S02 or M5S03 has to be selected instead.

Starting the studies in the winter term it is recommended to attend the compulsory module Basics in Numerical Modelling (M5P4) in advance to the compulsory module Theoretical Soil Mechanics (M5P1) if the basics in mathematics and continuum mechanics are not obtained otherwise. Generally, the studies can be started with M5P2, M5P4 and M1P1 in winter term and likewise with M5P1, M5P3 and eventually M5S02 or M5S03 in summer term.

A few compulsory elective modules are depending in content and difficulty on compulsory modules, so that the compliance of an order is recommended. These are:

- Special Issues of Soil Mechanics (M5S01) following Theoretical Soil Mechanics (M5P1)
- Applied Geotechnics (M5S03) following Earthworks and Foundation Engineering (M5P2)
- Ground Water and Earth Dams (M5S04) following Earthworks and Foundation Engineering (M5P2)
- Rock Engineering and Underground Construction (M5S05) following Rock Mechanics and Tunnelling (M5P3)
- Numerical Modelling in Geotechnics (M5S06) following Basics in Numerical Modelling (M5P4)
- Coupled Geomechanical Processes (M5S10) following Rock Mechanics and Tunnelling (M5P3)

The attendance of the annual Whitsun excursion of the Institute of Soil Mechanics and Rock Mechanics (IBF) is recommended at least once during the master program.
Table 5: Modules in Study Focus Geotechnical Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CP</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Name (Language)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type</td>
</tr>
<tr>
<td>(bau)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

compulsory modules:

- **M5P1:** Theoretical Soil Mechanics 6
 - Theoretical Soil Mechanics (G) L/E 4 wE 6
- **M5P2:** Earthworks and Foundation Engineering 6
 - Foundation Types (G) L/E 2 ngA wE 2
 - Basics in Earthworks and Embankment Dams (G) L/E 2
- **M5P3:** Rock Mechanics and Tunnelling 6
 - Basics in Rock Mechanics (G) L/E 2 ngA wE 1
 - Basics in Tunnel Construction (G) L/E 2
- **M5P4:** Basics in Numerical Modelling 1) 6
 - Continuum Mechanics (G) L 2 oE 3
 - Numerics in Geotechnics (G) L 2 oE 3
- **M1P1:** Design and Construction of Components in Reinforced Concrete *) 6
 - Design and Construction of Components in Reinforced Concrete (G) L/E 2/2 ngA wE 2

Sum compulsory modules: 30

12 8

compulsory elective modules:

- **M5S01:** Special Issues of Soil Mechanics 6
 - Unsaturated, Viscous and Cyclic Soil Behaviour - Theory and Element Tests (G) L/E 2 oE 6
 - Soil Dynamics (G) L/E 2
- **M5S02:** Ground Investigation *) 6
 - Soil Mechanical Laboratory Exercises (G) E 2 oE 6
 - Geomechanical Field Exercise (G) E 2
- **M5S03:** Applied Geotechnics *) 6
 - Foundations and Retaining Structures (G) L/E 2 wE 6
 - Special Foundation Engineering and Design (G) L/E 2
- **M5S04:** Ground Water and Earth Dams 6
 - Geotechnical Ground Water Problems (G) L/E 2 oE 6
 - Embankment Dams (Advanced) (G) L/E 2
- **M5S05:** Rock Engineering and Underground Construction 6
 - Aboveground Rock Engineering (G) L/E 2 wE 6
 - Tunnel Construction in Soils and in Existence (G) L/E 2
- **M5S06:** Numerical Modelling in Geotechnics 6
 - Exercises in Numerical Modelling (G) E 2 oE 6
 - FEM Applications in Geotechnical Modelling (G) L 2
- **M5S07:** Geotechnical Testing and Measuring Technology 6
 - Rock Testing (G) L 1 oE 6
 - Testing in Dam and Wastefill Engineering (G) L 1
 - Geotechnical Measuring Technology (G) L/E 2
- **M5S08:** Special Underground Engineering 6
 - Ground Improvement, Grouting and Soil Freezing (G) L/E 2 oE 3
 - Anchoring, Piling and Slurry Wall Technology (G) L/E 2 oE 3

(continuing next page)

*) Since module M1P1 is already taken by combination with Study Focus I 'Construction Engineering', module M5S02 or M5S03 has to be selected instead.
Table 5: Modules in Study Focus Geotechnical Engineering (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CP</th>
<th>Course</th>
<th>Type</th>
<th>HpW / SWS</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Name (Language)</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5S09:</td>
<td>Environmental Geotechnics</td>
<td>6</td>
<td>Landfills (G)</td>
<td>L/E</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brownfield Sites - Investigation, Evaluation, Rehabilitation (G)</td>
<td>L</td>
<td>2</td>
<td>oE 3</td>
</tr>
<tr>
<td>M5S10:</td>
<td>Coupled Geomechanical Processes 2)</td>
<td>6</td>
<td>Special Issues in Rock Mechanics (G)</td>
<td>L/E</td>
<td>2</td>
<td>EoT 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transport of Heat and Fluids 3) (E)</td>
<td>L</td>
<td>2</td>
<td>wE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Applied Geothermics 3) (E)</td>
<td>L</td>
<td>2</td>
<td>wE 3</td>
</tr>
<tr>
<td></td>
<td>Sum compulsory elective modules</td>
<td>60</td>
<td></td>
<td></td>
<td>20</td>
<td>22</td>
</tr>
</tbody>
</table>

explanations to Table 5:

general:
- M5PX Study Focus V, compulsory modules
- M5SXX Study Focus V, compulsory elective modules
- LC learning control
- CP credit point
- HpW / SWS hours per week
- W / S winter term / summer term
- G / E language German / English
- 1) Module must not be selected together with module M1S32 (SF 1).
- 2) In the module two examinations have to be taken, one of these can be selected.
- 3) Course with examination selectable.

- type of course:
 - L lecture
 - L/E lecture and exercise, separate or integrated
 - E exercise

- type of learning control:
 - wE written examination
 - oE oral examination
 - ngA not graded accomplishment
2 CURRICULUM

Mentoring, module selection, individual curriculum

2.3 Mentoring, module selection, individual curriculum

The selection options within the studies require that each student compiles an individual curriculum (comp. ER/SPO § 19 Par. 4). This comprises the selection of the two study focuses with the respective modules and the selection of the modules within the subject Subject-Specific Supplements (supplementary modules). This selection has to be supervised by a mentor chosen by the student (comp. ER/SPO § 17a). The mentor has to be a professor of the KIT Department Civil Engineering, Geo and Environmental Sciences and to be involved in one of the selected study focuses.

By the selection of the study focuses the respective compulsory modules are determined (s. Tab. 1 - 5). According to the predefined number of compulsory modules the necessary number of compulsory elective modules have to be taken from the list of the respective selected study focus (s. Tab. 1 - 5) in order to take modules in amount of 30 CP within the respective study focus. Within the subject Subject-Specific Supplements four compulsory or compulsory elective modules from all study focuses of the master degree program Civil Engineering, if not already selected, or from any thematically related master degree program have to be selected freely.

For the selection of the modules within the study focuses and the supplementary studies the forms for module selection available on the web page of the Examination Committee Master Civil Engineering, https://www.tmb.kit.edu/english/5583.php (in German), has to be filled in by the student and to be transferred by the mentor to the study program coordinator to be stored in the Campus Management System. The module selection shall be stored there in time to register for the exams in the first semester of the master degree program (comp. ER/SPO § 19 Par. 4), so that the management of the examinations (registration, deregistration if applicable, result booking etc.) can be processed smoothly. The individual curriculum can be viewed any time via the portal Campus Management for Students, https://campus.studium.kit.edu/english/index.php.

The registration to a learning control of courses from the offer of General Studies of ZAK or another course accepted by the department (‘Studiengangservice Bau-Geo-Umwelt’). The taken examinations were regularly uploaded as ‘Not assigned grades’. They can now (as from winter term 2021/22) be self assigned in two steps. Firstly, the respective ‘Teilleistungen’ with the title ‘Self Assignment HoC-ZAK-SpZ’... have to be selected in the module Interdisciplinary Qualifications according to the grading scale, not graded or graded. Then, the respective not assigned exam has to be assigned to one of the selected ‘Teilleistungen’. When credited the title and the credit points are taken over from the exam automatically. For crediting of exams that could not be assigned by oneself the form assignment of non-assigned activity statements (in German) has to be submitted to the Study Program Service of the department ("Studiengangservice Bau-Geo-Umwelt").

The registration to a learning control of courses from the offer of General Studies of ZAK or another course accepted by the Examination Committee Bachelor Civil Engineering shall be done online. That the Study Program Service of the department ("Studiengangservice Bau-Geo-Umwelt") has to be informed in time, so that the respective learning control can be selected in the campus management system within the registration period. For accepted courses the respective approval has to be provided.

The module Interdisciplinary Qualifications is completed without grade. After consultation with the lecturer a grade can be reported but is not included in the calculation of the overall grade.

2.4 Interdisciplinary Qualifications

The module Interdisciplinary Qualifications (comp. also ER/SPO § 15a) compiles the student by herself or himself respectively with an extent of 6 CP from the offer on key competences of the KIT House of Competence (HoC) as well as the Centre for Cultural and General Studies (ZAK), from the offer of General Studies of ZAK or language courses of the 'Sprachenzentrum' (SpZ, center of language studies). In special cases the Examination Committee Master Civil Engineering can accept or recognize further suitable courses as interdisciplinary qualifications beyond the mentioned options. Supporting by the mentor is presumed. Courses accepted generally by the Examination Committee are available directly as selection option in the module.

The registration to the courses from the offer on key competences of HoC and ZAK as well as to the language courses of SpZ is done directly at HoC, ZAK or SpZ. The taken examinations were regularly uploaded as 'Not assigned grades'. They can now (as from winter term 2021/22) be self assigned in two steps. Firstly, the respective ‘Teilleistungen’ with the title ‘Self Assignment HoC-ZAK-SpZ’... have to be selected in the module Interdisciplinary Qualifications according to the grading scale, not graded or graded. Then, the respective not assigned exam has to be assigned to one of the selected ‘Teilleistungen’. When credited the title and the credit points are taken over from the exam automatically. For crediting of exams that could not be assigned by oneself the form assignment of non-assigned activity statements (in German) has to be submitted to the Study Program Service of the department ("Studiengangservice Bau-Geo-Umwelt").

The registration to a learning control of courses from the offer of General Studies of ZAK or another course accepted by the Examination Committee Bachelor Civil Engineering shall be done online. That the Study Program Service of the department ("Studiengangservice Bau-Geo-Umwelt") has to be informed in time, so that the respective learning control can be selected in the campus management system within the registration period. For accepted courses the respective approval has to be provided.

The module Interdisciplinary Qualifications is completed without grade. After consultation with the lecturer a grade can be reported but is not included in the calculation of the overall grade.

2.5 Beginning and completion of a module

Every module and every examination is allowed to be credited only once (comp. ER/SPO § 7 Par. 5). The binding decision whether a module is selected is made by the student at the time of registering for the corresponding examination, also partial examination (comp. ER/SPO § 5 Par. 2). The student can reset this binding selection by deregistration in time. After attendance of the examination, especially of a partial examination, a module cannot be replaced by another one any more. By request to the Examination Committee Master Civil Engineering the assignment can be changed.

A module is completed if the general examination of the module has been passed (grade min. 4.0). In case that the module examination consists of several partial examinations, it holds: The module is completed if all partial examinations are passed (grade min. 4.0) so that the minimum requirement of credits of this module have been met.
2.6 Registration, deregistration, repetition of examinations

The **registration** to examinations, also to not graded accomplishments and examination prerequisites, takes place online via the portal Campus Management for Students, https://campus.studium.kit.edu/english/index.php. The following functions can be accessed there after login:

- register to and deregister from examinations
- retrieve examination results
- assign key competences of HoC, ZAK, SpZ by oneself
- print transcript of records

A successful online registration covers the admission to the examination. A confirmation for this is provided by the portal Campus Management for Students and can serve as proof for a made registration in case of doubts. If there occurs a problem with an attempt of an online registration the study program coordinator has to be informed as soon as possible in addition to the examiner on order to solve the problem in advance to the date of examination. In case of an oral examination the online registration is to be combined directly with the negotiation of an examination date with the examiner.

A registered examination has either to be taken or a **deregistration** has to be made in advance to the deadline of deregistration. In particular, this is valid if for instance the date of an oral examination is shifted to the next semester because the management of the examinations has to be made in terms of the semester. The rules for the deregistration from an examination are given by the ER/SPO § 10. The deregistration from examinations of other kinds as well as from not graded accomplishments (ER/SPO § 10 Par. 3) have to be made latest at the date of submission or presentation.

Principally, a failed examination can be repeated once, latest by the end of the examination period of the next but one semester to this examination (comp. ER/SPO § 8). If failing a written repeat examination a specific oral repeat examination can be taken. This is part of the repeat examination and will not be evaluated independently. After the specific oral repeat examination the overall grade of the repeat examination is determined, either grade 4.0 (passed) or grade 5.0 (failed).

If the **repeat examination** (including a specific oral repeat examination) will be failed as well, the **examination claim** is lost. A potential request for a second repetition has to be made without delay after loosing the examination claim. Requests for a second repetition of an examination (s. https://www.tmb.kit.edu/english/5583.php; in German) require the approval of the Examination Committee Master Civil Engineering. A counseling interview is mandatory.

Further information is available in the examination regulation (ER/SPO, https://www.sle.kit.edu/english/vorstudium/master-civil-engineering.php; in German), and from the Examination Committee Master Civil Engineering or the "Fachschaft" (student council).

2.7 Students with disability or chronic disease

Students with disability or chronic disease have the opportunity to get preferred access to participation limited courses, to adapt the order of taking certain courses to their requirements, or to take examinations of single modules in individually arranged form or period ('Nachteilsausgleich' - compensation for disadvantages, comp. ER/SPO § 13). The student has to present the respective attest.

The student submits an informal request with the respective attests to the Examination Committee Master Civil Engineering. The Examination Committee Master Civil Engineering defines in agreement with the examiner the details for the respective examination and informs the student in time.

2.8 Crediting and recognition of already obtained accomplishments

Already obtained accomplishments can by recognized generally under the conditions of the ER/SPO (comp. ER/SPO § 18). The recognition has to be made with the respective recognition form of the Examination Committee Master Civil Engineering (https://www.tmb.kit.edu/english/5583.php; in German). There, it has to be stated unambiguously at which place in the curriculum the recognized accomplishment has to be credited.

If the accomplishments are mainly **identical** with modules from the curriculum (name, objectives, content) this is confirmed on the form by the respective lecturer.

If the accomplishments are **not identical** with modules from the curriculum they can be recognized as well, if the obtained competences contribute to achieve the qualification goals of the study program. These are included into the individual curriculum in agreement with the mentor. The recognition is made by the Examination Committee Master Civil Engineering. Usually, modules in extent of 12 CP at maximum can be credited in the subject Subject-Specific Supplements. Additional credit points get lapsed.

The recognition of accomplishments obtained **outside of the higher education system** is made also with the respective recognition form of the Examination Committee Master Civil Engineering (https://www.tmb.kit.edu/english/5583.php; in German). A recognition is possible if the obtained competences contribute to achieve the qualification goals of the study program. The Examination Committee Master Civil Engineering examines in which extent the obtained knowledge and skills can be recognized and which parts of the higher education study can be replaced by them. It is allowed to replace not more than 50 % of the higher education study. These are included in the individual curriculum in agreement with the mentor.

The recognition form has to be submitted to the Examination Committee Master Civil Engineering which transfers it for crediting the accomplishments. Further information about recognitions can be found on the web page of the Examination Committee Master Civil Engineering (https://www.tmb.kit.edu/english/PAM.php).
2.9 Admission, preparation and completion of the master's thesis

The Master's Thesis has to be prepared usually in semester 4 in one of the selected study focuses (comp. also ER/SPO § 14). The topic of the master's thesis has to be assigned by a professor either of the KIT Department of Civil Engineering, Geo- and Environmental Sciences or of a domestic or foreign institution of higher education of the state or officially recognized by the state. If the topic shall be assigned by a person which is not member of the KIT Department of Civil Engineering, Geo- and Environmental Sciences, a permission of the Examination Committee Master Civil Engineering is required using the respective form (s. https://www.tmb.kit.edu/english/5583.php; in German). The wishes of the students may be respected when formulating the topic. In case that the master's thesis shall be prepared outside of KIT the leaflet 'Merkblatt - Externe Abschlussarbeiten' (http://www.haa.kit.edu/downloads/KIT_ALLGEMEIN_Merkblatt_Externe_Abschlussarbeiten.pdf; in German) has to be considered.

Those are admitted to the master's thesis who has passed successfully modules of extent of minimum 42 CP within the master program Civil Engineering. Obtained results in the module Interdisciplinary Qualifications cannot be counted for this purpose. The supervisor initiates that the master's thesis will be uploaded to the campus management system. After notification via e-mail the master's thesis has to be registered online at the portal Campus Management for Students. The admission is made after verification of the required prerequisites and eventual further conditions. As these steps have to be completed before starting the thesis (date of beginning), they shall be initiated at least two weeks in advance.

The duration of preparation is six months. The master's thesis can be written in another language than German if accepted by the supervisor. It has to be completed by a presentation that is considered in the grading within one month after submission. It is very much recommended to have gained already all technical and soft skills required for the preparation of the topic of the master's thesis before beginning the thesis project.

2.10 Additional accomplishments

An additional accomplishment is a voluntarily taken examination, which is not considered in the overall grade (comp. ER/SPO § 15). In total, additional accomplishments can be taken in extent of 30 CP at maximum from the entire offer of KIT.

The examination in the desired additional accomplishment shall be registered online by the student in time within the registration period. A few additional accomplishments are available in the module Further Examinations. There not available and desired additional accomplishment or additional modules respectively must be forwarded via e-mail to the Study Program Service of the department ('Studiengangservice Bau-Geo-Umwelt'). This makes the desired selection available in the campus management system so that the registration to the exam is possible online. By request to the Examination Committee Master Civil Engineering the assignment can by changed subsequently.

All taken additional accomplishments are listed in the transcript of records. If a module is completed this module can be included in the master degree certificate as additional module on request by the student. This applies also to additional accomplishments which were recognized by the Examination Committee Master Civil Engineering.
3 Further information

3.1 About the module handbook . . .

The module handbook is the relevant document in which the structure of the program is described and therefore it provides assistance for the orientation during the studies. It describes the modules belonging to the program and contains information about:

- the structure of the modules,
- the extent of the modules (in CP),
- the interdependencies of the modules,
- the learning outcomes of the modules,
- the type of assessment and examinations,
- the computation of the grade of the module and
- the placement of the module in the course of study.

Each module consists of one or more interrelated courses, which are completed by one or more examinations or not graded accomplishment. The extent of each module is characterized by 6 CP, which will be credited after the successful completion of the module. The module handbook provides the necessary information that the students can customize content and time schedule of the interdisciplinary studies according to personal needs, interest and job perspective.

In addition to the module handbook the course catalog and the institutes (web pages) provide important information. These are updated every semester concerning variable course details (e.g. time and location of the course) as well as short-term modifications.

3.2 About module examinations, examination committee . . .

The module examinations can be taken as a general examination or as several partial examinations. If the module examination is offered as a general examination, the entire content of the module will be reviewed in a single examination. If the module examination consists of partial examinations, the content of each course will be reviewed in corresponding partial examinations. Then the module examination can be taken over several semesters. Also not graded accomplishments can be part of the module examination, e.g. as examination prerequisites.

The Examination Committee Master Civil Engineering, https://www.tmb.kit.edu/english/PAM.php, is responsible for all legal questions in the context of examinations. For instance, all requests on second repetition, extension of deadlines or recognitions are submitted to this. It decides about their approval.

3.3 About changes in module offer . . .

The offer of modules changes in the course of the semesters. Modules can be discontinued or added or the module examination may change. If possible, such changes are announced in the module handbook with sufficient time in advance, at latest at the beginning of the semester as from they are valid (s. Chapt. Current changes).

Usually, it is valid that students who started a module (s. selection and completion of a module) can complete this in that form as started. The respective examinations are provided onwards over a certain time period usually at least one semester after time of change. In general, a consultation with the examiner is recommended in such a case.
3.4 Contact persons

Dean of Study Affairs:
 Prof. Dr. Peter Vortisch
 Institute for Transport Studies, Bldg. 10.30, R. 305
 consultation: on appointment
 Phone: 0721/608-42255
 Email: peter.vortisch@kit.edu

Study Program Coordination:
 PD Dr. Ulf Mohrlok
 KIT Department of Civil Engineering, Geo and Environmental Sciences, Bldg. 10.81, R. 311
 consultation: on appointment
 Phone: 0721/608-46517
 Email: ulf.mohrlok@kit.edu

Examination Committee Master Civil Engineering:
 Prof. Dr.-Ing. Kunibert Lennerts (chairperson)
 Dr.-Ing. Heike Schmidt-Bäumler (person in charge)
 Institute of Technology and Management in Construction, Bldg. 50.31, R. 005 (ground floor)
 consultation: Wed. 13.00 – 14.00 h
 Phone: 0721/608-46008
 Email: pam@bgu.kit.edu
 Web: https://www.tmb.kit.edu/english/PAM.php

Students’ Advisory Service:
 Dr.-Ing. Harald Schneider
 Institute of Technology and Management in Construction, Bldg. 50.31, R. 008 (ground floor)
 consultation: on appointment
 Phone: 0721/608-43881
 Email: harald.schneider@kit.edu

Study Program Service ('Studiengangservice Bau-Geo-Umwelt'):
 KIT Department of Civil Engineering, Geo and Environmental Sciences, Bldg. 10.81, R. 312
 Email: studiengangservice@bgu.kit.edu
 Web: http://www.bgu.kit.edu/english/studiengangservice.php

Fachschaft:
 Students in Civil Engineering
 Bldg. 10.81 (Altes Bauing. Geb.), R. 317.1 (3rd floor)
 consultation: s. http://www.fs-bau.kit.edu
 Phone: 0721/608-43895
 Email: fsbau@lists.kit.edu
 Web: http://www.fs-bau.kit.edu

3.5 Abbreviations, translations

CP/LP	credit points	Leistungspunkte
ER/SPO	examination regulations	Studien- und Prüfungsordnung
HpWSWS	contact hour per week	Semesterwochenstunde
PM	compulsory module	Pflichtmodul
S	summer term	Sommersemester
Sem.	semester	Semester
SM	compulsory elective module	Schwerpunktmodul
W	winter term	Wintersemester
4 Current changes

In the following, the important changes are listed as from summer term 2022. Although this process was done with great care, other/minor changes may exist.

modules not offered any more as from summer term 2022:
- Technical Hydraulics [bauiM2S17-SM3]
- Flow and Sediment Dynamics in Rivers [bauiM2S35-WB8]
- Economics and Management in Construction [bauiM4P3-]
- Business and Human Resource Management [bauiM4S01-]
- Turnkey Construction [bauiM4S15-]

modules newly offered as from summer term 2022:
- Uncertainty Modeling, Artificial Neural Networks and Optimization in Structural Analysis [bauiM1S48-KNN]
- River Processes [bauiM2S49-WB9], replaces module Flow and Sediment Dynamics in Rivers [bauiM2S35-WB8]
- Production Planning and Control in Construction [bauiM4P7-]
- Leadership and Communication [bauiM4S22-]
- Technology and Production Methods in Turnkey Construction and Civil Engineering Works [bauiM4S15-]
- Seminar Construction Machinery [bauiM4S28-]

modules newly offered as from winter term 2022/23:
- Real Estate und Facility Management - on Site Lectures [bauiM4S23-]
- Facility Management [bauiM4S24-]

modules newly offered as from summer term 2023:
- Lean Integrated Project Delivery (Lean IPD) [bauiM4S26-]
- Agile Project Management in Facility and Real Estate Management [bauiM4S27-]

changes of the courses assigned to the modules as from summer term 2022:
- Hydraulic Engineering [bauiM2P6-ADVHYENG]:
 The course River Engineering (6222701), 2 HpW/SWS, replaces the course Multiphase Flow in Hydraulic Engineering (6222701), 2 HpW/SWS.

changed examinations and not graded accomplishments as from summer term 2022:
- Applied Dynamics of Structures [bauiM1S04-BAUDYN]:
 The module examination is a written examination with 6 CP.
- Hydraulic Engineering [bauiM2P6-ADVHYENG]:
 The module examination consists of the two not graded accomplishments Design Exercise River Engineering and Design Exercise Hydraulic Structures as examination prerequisites with 1 CP each and the written examination Hydraulic Engineering with 4 CP.
- Track Guided Transport Systems - Operation and Capacity [bauiM3S18-EBBETRKAP]:
 The module examination is a written examination with 6 CP.
- Project Management in Construction and Real Estate Industry [bauiM4P5-]:
 The module examination consists of a not graded accomplishment with 1 CP and an examination of other type with 5 CP.
- Coupled Geomechanic Processes [bauiM5S10-GEKOPPRO]:
 The module examination consists of the examination of other type Special Issues in Rock Mechanics with 3 CP and a selectable written examination in the field of Geothermics with 3 CP.
5.1 Module: Design and Construction of Components in Reinforced Concrete (bauIM1P1-BEMISTB) [M-BGU-100033]

Responsible: Prof. Dr.-Ing. Alexander Stark
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Modules)
- Study Focus I / Geotechnical Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Modules)
- Study Focus II / Geotechnical Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-100170</th>
<th>Student Research Project 'Reinforced Concrete'</th>
<th>2 CR</th>
<th>Stark</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100015</td>
<td>Design and Construction of Components in Reinforced Concrete</td>
<td>4 CR</td>
<td>Stark</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100170 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100015 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Based on the module 'Basics in Reinforced Concrete' and cross-cutting modules such as 'Structural Analysis' the students can recognize complex subjects of reinforced concrete and apply their methods. They can assign given problems to the respective design problems, conduct these subsequently and apply the current standards. Furthermore, the students can interpretate the results of a design and evaluate them with respect to their correctness and profitability.

Content

- design and detailing of structural members
- strut-and-tie models
- punching
- serviceability limit state
- structural fire design
- introduction to prestressed concrete

Module grade calculation
grade of module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 30 h
- preparation of student research project: 60 h
- examination preparation: 30 h

total: 180 h

Recommendation
courses Basics of Reinforced Concrete I+II (6200509, 6200601)
Literature

lecture notes
Module: Steel and Composite Structures (bauiM1P2-STAHLBAU) [M-BGU-100034]

Responsible: Prof. Dr.-Ing. Thomas Ummenhofer

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Structural Engineering (Compulsory Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German

Level: 4

Version: 2

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100171</td>
<td>2 CR</td>
<td>Student Research Project 'Steel Structures'</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-BGU-100016</td>
<td>4 CR</td>
<td>Steel and Composite Structures</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100171 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100016 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can design and construct structures in steel and steel composite construction method. Further, they can calculate structures and building components made of thin-walled, cold formed steelwork components. They are able to proof fire protection in steel constructions and to design torsion-loaded components of any cross section.

Content
- basics of steel composite structures
- light-weight steel construction
- fire protection in steel constructions
- the theory of torsion

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 25 h
- preparation of student research project: 45 h
- examination preparation: 50 h

total: 180 h

Recommendation
lecture Basics in Steel Structures (6200504)
Literature
5.3 Module: Surface Structures and Dynamics of Structures (bauiM1P3-FTW-BD) [M-BGU-100035]

Responsible: Prof. Dr.-Ing. Peter Betsch
Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Modules)

Credits
6

Grading scale
Grade to a tenth

Recurrence
Each winter term

Duration
1 term

Language
German

Level
4

Version
3

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107818</td>
<td>Student Research Project 'Surface Structures'</td>
<td>1 CR</td>
<td>Freitag</td>
<td>Each winter term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-107819</td>
<td>Student Research Project 'Dynamics of Structures'</td>
<td>1 CR</td>
<td>Betsch</td>
<td>Each winter term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-100017</td>
<td>Surface Structures</td>
<td>2 CR</td>
<td>Freitag</td>
<td>Each winter term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-100077</td>
<td>Dynamics of Structures</td>
<td>2 CR</td>
<td>Betsch</td>
<td>Each winter term</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-107818 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-107819 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100017 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-100077 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students gain the ability to write up and apply the essential principles for surface structures (theory, models, analytical and numerical solution procedures and error analysis) as basis for design and construction. They are further able to analyze the vibration behavior of structures in the context of mechanical modeling. The students can apply concepts for the avoidance of vibrations and the reduction of vibrations to a tolerable extent and can describe fundamental vibration phenomena by means of small scale building models.

Content

Surface Structures:
- panel structures models and basic equations
- PDE and BCs for panel structures and analytical solutions
- practical related solutions for panel structures with truss models
- plate structures models and basic equations
- PDE and simplifications for plate structures
- analytical solutions for plate structures, incl. serial solutions
- FEM for plate structures (general/rot. symmetry)
- practical related solutions for plate structures
- elastic foundation, temperature load and influence surfaces
- introduction to shell structures

Dynamics of Structures:
Vibratory structural-mechanical constructions with finite degrees of freedom are considered. The vibration analysis is based on linearized equations of motion and their solutions. Non-damped and damped free oscillations caused by different kinds of excitations are discussed. This includes measures avoiding and reducing vibrations of structures.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Surface Structures lecture: 30 h
- Dynamics of Structures lecture: 30 h

independent study:

- preparation and follow-up lectures Surface Structures: 15 h
- preparation of student research project ‘Surface Structures’ (not graded accomplishment): 20 h
- examination preparation Surface Structures (partial exam): 25 h
- preparation and follow-up lectures Dynamics of Structures: 15 h
- preparation of student research project ‘Dynamics of Structures’ (not graded accomplishment): 20 h
- examination preparation Dynamics of Structures (partial exam): 25 h

total: 180 h

Recommendation
lectures in Structural Analysis I+II (6200401, 6200501);
laboratory course Dynamics of Structures (6215905) in addition to the lecture Dynamics of Structures (6215701), can be
selected as additional accomplishment in the module Further Examinations (M-BGU-103951)

Literature
Surface Structures:
lecture notes Flächentragwerke
von Scheiben und Platten, Springer.

Dynamics of Structures:
lecture notes: P. Vielsack: Grundlagen der Baudynamik
Module: Bracing and Stability in Reinforced Concrete (bauiM1S01-STABISTB) [M-BGU-100003]

Responsibility: Prof. Dr.-Ing. Alexander Stark

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100018</td>
<td>Bracing and Stability in Reinforced Concrete</td>
<td>6</td>
<td>CR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100018 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Based on the module 'Basics in Reinforced Concrete', 'Design and Construction of Components in Reinforced Concrete' and cross-cutting modules such as 'Structural Analysis' the students can transfer and apply the methods from the module 'Non-linear Analysis of Beam Structures' to the subject of reinforced concrete with respect to bracing and stability of buildings. Furthermore, the students can analyse and solve problems in special issues of reinforced concrete. Given problems can be assigned to the respective design problems, be conducted subsequently and the current standards can be applied.

Content
- bracing and stability of buildings
- design of columns
- non-linear calculation methods to determine sectional forces
- time-dependent material behaviour
- serviceability limit state

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 75 h

total: 180 h

Recommendation
course Basics of Reinforced Concrete I (6200601), module Design and Construction of Components in Reinforced Concrete [bauiM1P1-BEMISTB]

Literature
lecture notes
5.5 Module: Basics of Prestressed Concrete (bauiM1S02-GDLSPANBB) [M-BGU-100036]

Responsible:	Prof. Dr.-Ing. Alexander Stark
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Study Focus I / Structural Engineering (Compulsory Elective Modules)
Subject-Specific Supplements	Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits	6
Grading scale	Grade to a tenth
Recurrence	Each summer term
Duration	1 term
Language	German
Level	4
Version	1

Mandatory

| T-BGU-100019 | Basics of Prestressed Concrete | 6 CR | Stark |

Competence Certificate

- 'Teilleistung' T-BGU-100019 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students know the basics and can reconstruct the functional principle of prestressed concrete. The students can explain the already obtained knowledge in the subjects 'Strength of Materials', 'Structural Analysis' and 'Design and Construction of Components in Reinforced Concrete' and can transfer these to the methods in prestressed concrete. The students are able to conduct design of buildings in structural engineering safely and economically by reference to current standards.

Content

- Types and systems for prestressing
- loss of prestressing forces (friction, time-variant, immediate, etc.)
- proof in ultimate limit state and in serviceability limit state

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 75 h

total: 180 h

Recommendation

module Design and Construction of Components in Reinforced Concrete [bauiM1P1-BEMISTB]

Literature

lecture notes
5.6 Module: Solid Construction Bridges (bauiM1S03-MASSBRUE) [M-BGU-100037]

Responsible: Prof. Dr.-Ing. Alexander Stark

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)

Subject-Specific Supplements

Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100020</td>
<td>Solid Construction Bridges</td>
<td>6 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- ‘Teilleistung’ T-BGU-100020 with written examination according to § 4 Par. 2 No. 1

details about the learning control see at the ‘Teilleistung’

Prerequisites

none

Competence Goal

Based on the module ‘Basics of Prestressed Concrete’ the students can explain the peculiarity of bridge constructions. In addition, they can describe the principle procedure of the design of solid construction bridges and can conduct these. Hence, the students can describe the differences to classical structural engineering and the introduction to current standards.

Content

- construction methods, production and impacts
- proof in ultimate limit state and in serviceability limit state
- types of supports

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 75 h

total: 180 h

Recommendation

module Basics of Prestressed Concrete [bauiM1S02-GDLSPANNB]

Literature

lecture notes
5.7 Module: Applied Dynamics of Structures (bauIM1S04-BAUDYN) [M-BGU-100038]

Responsible: Prof. Dr.-Ing. Alexander Stark

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

- Mandatory
 - T-BGU-100021 Applied Dynamics of Structures 6 CR Stark

Competence Certificate
- 'Teilleistung' T-BGU-100021 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the 'Teilleistung'

Prerequisites
- none

Competence Goal
The students can transfer their basic knowledge in dynamics to field of solid construction. They are able to evaluate buildings with respect to their susceptibility to vibrations and to identify the relevant dynamic loads. Further, the students are able develop possible countermeasures and to investigate the efficiency of the measures. The student can describe the basic seismological relationships regarding soil-building-interaction, so that they can design basic structures under impact of earthquake loads.

Content
Applied Dynamics of Structures:
- basics of dynamics of structures
- man-made excited, machinery excited, wind excited vibrations and counteractions

Earthquake Engineering:
- basics in earthquake engineering
- presentation of practical relevant calculation methods
- modeling, calculation, designing, and construction of buildings

Module grade calculation
grade of the module is grade of the exam

Annotation
as from summer term 2022 written examination

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Applied Dynamics of Structures lecture, exercise: 30 h
- Earthquake Engineering lecture, exercise: 30 h

independent study:
- preparation and follow-up lectures, exercises Applied Dynamics of Structures: 30 h
- preparation and follow-up lectures, exercises Earthquake Engineering: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
- none

Literature
5.8 Module: Material Science, Welding and Fatigue (bauiM1S06-SCHWEISSEN) [M-BGU-100039]

Responsibility: Dr.-Ing. Philipp Weidner
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

Subject-Specific Supplements
- 'Teilleistung' T-BGU-100023 with written examination according to § 4 Par. 2 No. 1
 details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can

- assess the usability of different steel materials for different requirements,
- design constructionally weld joints and define requirements for their production and quality assurance,
- differentiate the usability of different welding techniques,
- design and construct steel components stressed by fatigue,
- evaluate failures of steel components.

Content
- materials: denotation of steels, physical and technological properties
- fatigue: influencing parameters, calculation concepts
- welding technology: welding techniques, welding instructions
- quality management: building law, implementation categories, competences
- fracture toughness: linear fracture mechanics
- designing of welded constructions: internal stresses, welding distortion
- material testing: non-destructive testing, material and weld joint failures

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

Total: 180 h

Recommendation
courses Theory of Building Materials (6200206), Basics in Steel Structures (6200504)
Literature

lecture accompanying documents

DIN EN 1993-1-10: Bemessung und Konstruktion von Stahlbauten - Teil 1-10: Stahlsortenauswahl im Hinblick auf Bruchzähigkeit und Eigenschaften in Dickenrichtung
DIN EN 1090: Ausführung von Stahltragwerken und Aluminiumtragwerken
5.9 Module: Construction of Steel and Composite Bridges (bauiM1S07-STAHLBRÜ) [M-BGU-100040]

Responsible: Prof. Dr.-Ing. Thomas Ummenhofer

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100024 | Construction of Steel and Composite Bridges | 6 CR | Ummenhofer |

Competence Certificate
- ‘Teilleistung’ T-BGU-100024 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the ‘Teilleistung’

Prerequisites
- none

Competence Goal
The students can evaluate steel and steel composite bridges with respect to design, construction, production, conduct design calculations and design constructive details.

Content
- historical development
- design basics
- construction types for main beams
- bridge bearings
- assembly process
- design examples

Module grade calculation
grade of the module is grade of the exam

Annotation
- none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 75 h

Recommendation
- course Basics in Steel Structures (6200504), module Steel and Composite Structures [bauiM1P2-STAHLBAU]
Literature
lecture accompanying documents
Module: Hollow Section Structures (bauiM1S08-HOHLPROFIL) [M-BGU-100004]

Responsible: Dr.-Ing. Stefan Herion
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
 Subject-Specific Supplements
 Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

| T-BGU-100086 | Hollow Section Structures | 6 CR | Herion |

Competence Certificate
- 'Teilleistung' T-BGU-100086 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can design and construct predominantly static and non predominantly static stressed constructions made of hollow sections considering their connections.

Content
- appliance in steel- and bridge engineering
- joint constructions
- fatigue behavior
- calculation examples

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
 - lecture, exercise: 60 h
independent study:
 - preparation and follow-up lectures, exercises: 45 h
 - examination preparation: 75 h
total: 180 h

Recommendation
course Basics in Steel Structures (6200504)

Literature
lecture notes: 'Hohlprofilkonstruktionen', Karlsruher Institut für Technologie (KIT), Versuchsanstalt für Stahl, Holz und Steine
5.11 Module: Glass, Plastic and Cable Structures (bawiM1S09-GlaKunSe) [M-BGU-100041]

Responsible: Dr.-Ing. Daniel Ruff

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100025 | Glass, Plastic and Cable Structures | 6 CR | Ruff |

Competence Certificate

- 'Teilleistung' T-BGU-100025 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students can describe the historical evolution of glass materials, the material characteristics of currently used glass products in construction engineering as well as structural behavior of products of glass and glass-steel structures considering the specific properties of stainless steels. They are able to conduct proofs of load-carrying capacity according to current technical standards (e.g. DIN 18008).

The students can explain the manufacturing, characteristics, processing capacities and applications of plastics in construction engineering. In addition, the students can describe the principles of construction and design of adhesive bonds.

The students can describe the assembly, production and characteristics of high-strength tension members (steel cables, cords, tension bar members), the associated end-connections and their application in construction engineering. They are able to conduct simple proofs of structural safety for high-strength tension members according to Eurocode for predominantly statically stresses structures. In addition, they can explain the assembly of large structures with cables (stadium roofs, suspension bridges).

Content

- glass in civil engineering
- stainless steels, upgrading products
- construction details, design of glass structures
- plastics in civil engineering, adhesive bonds, construction details
- design of wires, cables, cords
- tension bar systems
- end-connections, buffles
- static structural behavior
- dynamic structural behavior
- design of structures with high-strength tension members
- construction details of high-strength tension members
- assembly of cable structures

Module grade calculation

grade of the module is grade of the exam

Annotation

none
Workload
contact hours (1 HpW = 1 h x 15 weeks):
 • lecture, exercise: 60 h

independent study:
 • preparation and follow-up lectures, exercises: 45 h
 • examination preparation: 75 h

total: 180 h

Recommendation
course Basics in Steel Structures (6200504)

Literature
lecture accompanying documents
5.12 Module: Building Preservation of Steel and Timber Structures (bauM1S11-BAUING-BSH) [M-BGU-100043]

Responsible: Dr.-Ing. Matthias Frese
Prof. Dr.-Ing. Thomas Ummenhofer

Organisation:
KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
Study Focus I / Structural Engineering (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-110856</td>
<td>Building Preservation in Steel Structures</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-BGU-110857</td>
<td>Building Preservation in Timber Structures</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-110856 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-110857 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites
The module must not be taken together with the modules Building Preservation and Innovations in Metal and Lightweight Structures [bauM1S46-BWE-INNO-MLB] as well as Building Preservation and Innovations in Timber Structures [bauM1S47-BWE-INNO-HB].

Competence Goal
The students can explain the procedure of investigation and evaluation of old building fabric. They can describe the characteristics of old steel and cast productions made of iron materials as well as the timber quality (in-situ strength grading of timber). They are able to name typical defects of steel and timber structures. They conduct realistic static computations of old constructions and determine the remaining lifetime. They can explain methods for repairing and strengthening of steel and timber structures on the base of concepts conserving cultural heritage and taking into consideration carpentry and engineered solutions.

Content
- historical overview
- properties of old steels, cast materials and old, built-in timber
- investigation of structures and building parts
- damage-mechanisms in steel and timber structures
- investigation of bearing capacity and remaining lifetime
- restoration and strengthening procedures

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Preservation of Steel Structures lecture: 30 h
- Preservation of Timber Structures lecture/exercise: 30 h

independent study:
- preparation and follow-up lectures Preservation of Steel Structures: 30 h
- examination preparation Preservation of Steel Structures (partial examination): 30 h
- preparation and follow-up lectures/exercises Preservation of Timber Structures: 30 h
- examination preparation Preservation of Timber Structures (partial examination): 30 h

total: 180 h
Recommendation
participation in module Timber Structures [bauM1S12-BAUING-HB]

Literature
lecture accompanying documents
Module: Timber Structures (bauIM1S12-BAUING-HB) [M-BGU-100044]

Responsible: Prof. Dr.-Ing. Philipp Dietsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100028 | Timber Structures | 6 CR | Dietsch |

Competence Certificate
- 'Teilleistung' T-BGU-100028 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the 'Teilleistung'

Prerequisites
- none

Competence Goal

After the successful completion of the module, the students are able to differentiate construction types, used in modern timber buildings, and to design wall, floor and roof elements used in timber frame construction. The students know the state-of-the-art in construction with plane timber elements including cross-laminated timber and timber-concrete composites. The students are able to design plane timber elements under special consideration of shear deformations, including gamma-method and shear analogy.

The students are able to design large-span timber structures under consideration of the special characteristics of timber as a construction material, i.e. taking into account the anisotropic behavior of wood and its reaction to moisture. The students are able to understand the particularities in the design of beams with special structural forms and to perform stability verifications under consideration of the stiffness of connections. They are able to design important details, connections and related reinforcement.

Content

Based on the contents taught on Bachelors level (e.g. Basics in Timber Structures), the students receive further insight into the design of elements used in modern timber construction. Within this, the first focus is given to plane elements made of cross-laminated timber and timber-concrete composites. The second focus is on the design of large-span timber structures.

The subjects covered can be defined as follows.

- timber houses: structural typologies and development
- wall and floor elements
- cross-laminated timber: Characteristics and design
- timber-concrete-composite structures
- timber products and structural elements in timber engineering
- connections and stiffness of connections
- glued connections
- reinforcement of connections
- stability and bracing systems
- notched beams and holes in beams
- structural fire design

All topics are accompanied by exercise sessions in which the essential design methods are applied.

Module grade calculation

grade of the module is grade of the exam

Annotation
- none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 75 h

total: 180 h

Recommendation
none

Literature
PowerPoint slides. Scriptum of exercise session. Notes of the students, taken during lectures, are necessary.

Scriptum to specific course contents
EN 1995-1-1 with DIN EN 1995-1-1/NA:2013-08

Secondary literature:
Blaß, H.-J., Sandhaas, C.; Timber Engineering; KIT Scientific Publishing; 2017
M 5.14 Module: Non-linear Analysis of Beam Structures (bauiM1S14-NILI-STAB) [M-BGU-100046]

Responsible: Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100030 | Non-linear Analysis of Beam Structures | 6 CR | Freitag |

Competence Certificate
- 'Teilleistung' T-BGU-100030 with written examination according to § 4 Par. 2 No. 1

Prerequisites
none

Competence Goal
The students can formulate and apply the main essential principles of the nonlinear analysis of beam structures (ultimate load design, II. Order theory, extensions and error analysis) as the basis for design and construction. They are able to compare and combine different methods.

Content
- material nonlinearity: basics of ultimate load design, plastic hinge 1st order theory
- incremental and direct calculation of the ultimate load, limit value theorems
- geometrical nonlinearity: equilibrium of 2nd order theory
- displacement methods
- predeformation
- iteration procedures
- stability problems
- combination of geometrical and material nonlinearity

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 75 h

total: 180 h

Recommendation
courses Structural Analysis I+II (6200401, 6200501)

Literature
lecture notes 'Nichtlineare Modellierung von Stabtragwerken'
Module: Computational Analysis of Structures (bauiM1S15-CTWM) [M-BGU-100047]

Responsible: Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100174</td>
<td>Student Research Project 'Computational Analysis of Structures'</td>
<td>2 CR</td>
<td>Freitag</td>
<td></td>
</tr>
<tr>
<td>T-BGU-100031</td>
<td>Computational Analysis of Structures</td>
<td>4 CR</td>
<td>Freitag</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100174 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-100031 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can formulate and apply the essential principles for the computational modeling of structures (FE models for beam and surface structures, modeling of practical problems, error analysis) as basis for design and construction.

Content
- numerical simulation of 2D/3D beams, surface structures
- modeling of 2D/3D beams, surface structures
- exactness and improvement of the solutions
- folded plates
- rotational shells
- adaptive mesh generation
- stationary heat conduction 2D/3D and further problems of building physics
- commercial software for design and construction

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h
- independent study:
 - preparation and follow-up lectures, exercises: 30 h
 - preparation of student research project (exam prerequisite): 50 h
 - examination preparation: 40 h

total: 180 h

Recommendation
module Surface Structures and Dynamics of Structures [bauiM1P3-FTW-BD]
Literature

lecture notes 'Computergestützte Tragwerksmodellierung'
Module: FE-Applications in Practical Engineering (bauiM1S16-FE-PRAXIS) [M-BGU-100048]

Responsible: Prof. Dr.-Ing. Steffen Freitag
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
 Subject-Specific Supplements
 Study Focus II / Structural Engineering (Compulsory Elective Modules)

Mandatory

T-BGU-100032 FE-Applications in Practical Engineering 6 CR Freitag

Competence Certificate
- 'Teilleistung' T-BGU-100032 with oral examination according to § 4 Par. 2 No. 2
 details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can conduct and check computer aided modeling of structures by using commercial FE-codes (beams, surface structures) for practical civil engineering projects.

Content
- application of different commercial software for the modeling of beam- and surface structures
- structural analysis and design
- discussion of approximation behaviour of numerical methods at examples
- analytical comparative calculations
- software comparisons
- control options.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h
independent study:
 - preparation and follow-up lectures, exercises: 45 h
 - examination preparation: 75 h
total: 180 h

Recommendation
module Computational Analysis of Structures [bauiM1S15-CTWM]

Literature
lecture notes Computational Analysis of Structures
5.17 Module: Shell Structures and Stability of Structures (bauiM1S17-STABISHELL) [M-BGU-100049]

Responsible: Prof. Dr.-Ing. Steffen Freitag
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100254</td>
<td>Student Research Project 'Shell Structures and Stability of Structures'</td>
<td>2 CR</td>
<td>Freitag</td>
</tr>
<tr>
<td>T-BGU-100033</td>
<td>Shell Structures and Stability of Structures</td>
<td>4 CR</td>
<td>Freitag</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100254 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-100033 with oral examination according to § 4 Par. 2 No. 2
details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can formulate and apply analytical and computational modeling of shell structures and of stability problems.

Content
- shell structures in nature and technique
- membrane and bending theory of rotational shells
- analytical solutions for rotational shells
- force value method for rotational shells
- FE-modeling of shell structures
- basics of stability theory for structures
- analytical solutions for stability endangered structures
- sensitivity and imperfections for beam and surface structures
- numerical models for path following
- bifurcation
- buckling of shells
- practical examples

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Shell Structures lecture, exercise: 30 h
- Stability of Structures lecture, exercise: 30 h

independent study:
- preparation and follow-up lectures, exercises Shell Structures: 15 h
- preparation and follow-up lectures, exercises Stability of Structures: 15 h
- preparation of student research project (exam prerequisite): 50 h
- examination preparation: 40 h

total: 180 h
Recommendation
course Surface Structures (6214701)

Literature
lecture notes Schalentragwerke
lecture notes Stabilität der Tragwerke
Module: Numerical Methods in Structural Analysis (baurM1S18-FEM-BS) [M-BGU-100050]

Responsible: Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

T-BGU-100034 Numerical Methods in Structural Analysis 6 CR Freitag

Competence Certificate
- ‘Teilleistung’ T-BGU-100034 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the ‘Teilleistung’

Prerequisites
none

Competence Goal
The students will can develop finite element programs for beam and surface structures on the basis of methods from structural analysis and can integrate the numerical methods.

Content
- development of a program for truss structures with VBA
- input and output of data
- element stiffness matrices, transformation, solving of equations
- calculation of stress resultants
- programming force density method for cable structures
- iterative procedures for designing
- visualization of results
- FEM for surface structures
- numerical integration for surface structures
- discussion of FEM with approximation with low order interpolation functions
- elimination of numerical stiffness effects using specific integration and interpolation techniques

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
module Computational Analysis of Structures [baurM1S15-CTWM]

Literature
lecture notes Computational Analysis of Structures
5.19 Module: Non-linear Analysis of Surface Structures (bauiM1S19-NILI-FTW) [M-BGU-100051]

Responsible: Prof. Dr.-Ing. Werner Wagner

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules) Subject-Specific Supplements
Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100035 | Non-linear Analysis of Surface Structures | 6 CR | Wagner |

Competence Certificate
- 'Teilleistung' T-BGU-100035 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can classify and apply the essential principles of nonlinear analysis of surface structures. Hence, they are able to conduct even difficult static computations and use the required tools therefore methodically in an appropriate manner.

Content
- geometric nonlinear models of surface structures
- nonlinear material models for thin structures
- analytical and numerical surface structure analysis
- introduction to the modeling of shell structures
- application of stability and dynamic problems
- modeling of laminated structures
- practical examples

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
course Surface Structures (6214701), module Computational Analysis of Structures [bauiM1S15-CTWM]

Literature
lecture notes
Module: Basics of Finite Elements (bauiM1S20-GRUNDFE) [M-BGU-100052]

Responsible: Prof. Dr.-Ing. Peter Betsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory
- T-BGU-109908 Homework 'Basics of Finite Elements' 1 CR Betsch
- T-BGU-100047 Basics of Finite Elements 5 CR Betsch

Competence Certificate
- 'Teilleistung' T-BGU-109908 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100027 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can describe the structure and the functionality of FE codes. They can formulate the basics of variational principles of FEM as well as the Lagrangian element family of different order of projection for one-dimensional, planar and spatial problems in the fields of linear strength of materials and heat transport. They know, that it is an approximate solution method for boundary value problems, and they are aware of its limits. They can get familiar quickly with commercial FE codes and can use them reasonably.

Content
The theoretical principles as well as the numerical implementation of Finite Element Methods are covered. The major terms are discussed such as weak form of the boundary value problem, test function, projection function, continuity requirements, domain discretization, Galerkin approximation, stiffness matrix, assembly, iso-parametric concept, numerical integration and accuracy of finite element approximation.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 45 h
- processing exercises sheets: 30 h
- examination preparation: 45 h

total: 180 h

Recommendation
none

Literature
Module: Fracture and Damage Mechanics (bauM1S21-BRUCHMECH) [M-BGU-100053]

Responsible: Prof. Dr.-Ing. Thomas Seelig
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Structural Engineering (Compulsory Elective Modules)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100087 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students are able to apply the basic principles and methods of fracture and damage mechanics as used for the analysis of fissured structures and the description of complex material behavior. They can establish relationships between continuum mechanical descriptions and material specific aspects.

Content
- phenomenology and mechanisms of fracture
- linear elastic fracture mechanics (crack tip fields, K-concept, energy balance, J-integral, small scale yielding)
- elastic plastic fracture mechanics (Dugdale model, HRR-field, J-controlled crack growth)
- dynamic fracture mechanics (dynamic loading, fast running cracks)
- micromechanics of heterogeneous solids (defects and eigenstrain, RVE-concept, homogenization)
- damage mechanics (mechanisms of brittle and ductile damage, micromechanical and phenomenological models, softening and localization)

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h
independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h
total: 180 h

Recommendation
course Introduction to Continuum Mechanics (6200607)
Literature
Module: Material Models in Solid Mechanics (bauIM1S22-MATTHEO) [M-BGU-100054]

Responsible: Prof. Dr.-Ing. Thomas Seelig

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100044 | Material Models in Solid Mechanics | 6 CR | Seelig |

Competence Certificate

- 'Teilleistung' T-BGU-100044 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students know the phenomena of inelastic material behavior as well as the continuum mechanical methods for their theoretical description and they can explain them.

Content

- general purpose of material theories and constitutive laws
- elasticity (isotropic / anisotropic material models)
- phenomenology of inelastic material behavior (residual deformation, rate-dependence / creep, plastic incompressibility / dilatancy, pressure-dependence / independence, damage)
- concepts of constitutive modeling (internal variables, yield condition, flow rule, hardening laws, incremental constitutive equations)
- material theories: viscoelasticity, plasticity, viscoplasticity
- applications (metals, geomaterials, concrete, thermoplastic polymers, wood)

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation

course Introduction to Continuum Mechanics (6200607)
Literature

5.23 Module: Concrete Construction Technology (bauiM1S24-BETONTECH) [M-BGU-100056]

Responsible: Prof. Dr.-Ing. Frank Dehn
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-100036</th>
<th>Concrete Construction Technology</th>
<th>6 CR</th>
<th>Dehn</th>
</tr>
</thead>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100036 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Concrete Technology lecture/exercise: 45 h
- Deformation and Fracture Processes lecture: 15 h

independent study:

- preparation and follow-up lecture/exercises Concrete Technology: 45 h
- preparation and follow-up lectures Deformation and Fracture Processes: 15 h
- examination preparation: 60 h

total: 180 h

Recommendation
none
5.24 Module: Durability and Service Life Design (bauIM1S25-DAUERLEB) [M-BGU-100057]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Dr.-Ing. Michael Vogel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Civil Engineering, Geo- and Environmental Sciences</td>
</tr>
<tr>
<td>Part of:</td>
<td>Study Focus I / Structural Engineering (Compulsory Elective Modules)</td>
</tr>
<tr>
<td></td>
<td>Subject-Specific Supplements</td>
</tr>
<tr>
<td></td>
<td>Study Focus II / Structural Engineering (Compulsory Elective Modules)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100037 | Durability and Service Life Design | 6 CR | Vogel |

Competence Certificate

- ‘Teilleistung’ T-BGU-100037 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the ‘Teilleistung’

Prerequisites

none

Competence Goal

see German version

Content

see German version

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Corrosion Processes and Life Time lecture/exercise: 45 h
- Analytic Methods lecture: 15 h

independent study:

- preparation and follow-up lecture/exercises Corrosion Processes and Life Time: 45 h
- preparation and follow-up lectures Analytic Methods: 15 h
- examination preparation: 60 h

total: 180 h

Recommendation

course Building Chemistry (6200108)
5.25 Module: Building Preservation of Concrete and Masonry Constructions (bauIM1S26-BBM) [M-BGU-100058]

Responsible: Dr.-Ing. Engin Kotan
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100175</td>
<td>Student Research Project 'Building Preservation of Concrete and Masonry Constructions' 1 CR Kotan</td>
</tr>
<tr>
<td>T-BGU-100038</td>
<td>Building Preservation of Concrete and Masonry Constructions 5 CR Kotan</td>
</tr>
</tbody>
</table>

Competence Certificate
- "Teilleistung" T-BGU-100175 with not graded accomplishment according to § 4 Par. 3
- "Teilleistung" T-BGU-100038 with oral examination according to § 4 Par. 2 No. 2
details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
After successful completion of the module the students have detailed knowledge about the relevant causes and processes of degradation in concrete and masonry constructions. Thus they are able to take appropriate measures to enhance the durability of solid buildings and to plan and execute effective measures to repair damaged concrete and masonry constructions. Moreover the students have also the knowledge about the main aspects and basic techniques of building reinforcement.

Content
This course provides fundamental knowledge of the possibilities to preserve concrete and masonry constructions. Besides an introduction into the characteristics of masonry, plaster, concrete and reinforced concrete structures, various damage patterns and their origins are discussed. Based on the knowledge of the essential damage processes, efficient measures for the increase of the durability are described, which include material and constructional precautions as well as additional preventive measures. Furthermore the course focuses on the repair of already damaged concrete and masonry constructions. In this connection different research methods for the analysis of damages are presented and various possibilities are shown to predict the time-development of these damages. Finally repair materials as well as procedures are described which are necessary for the realization of a durable repair measure. A further main part of the course covers the different possibilities of an additional reinforcement of concrete and masonry constructions. Applicable materials and their characteristics in design and construction are introduced and discussed. In the accompanying exercises the subject matter shall independently be developed and the practical realization will be practised by means of several design problems.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Protection, Rehabilitation and Reinforcement of Concrete and Masonry Constructions lecture, exercise: 45 h
- Building Analysis lecture: 15 h

independent study:
- preparation and follow-up lectures, exercises Protection, Rehabilitation and Reinforcement of Concrete and Masonry Constructions: 25 h
- preparation and follow-up lectures Building Analysis: 15 h
- preparation of student research project "Building Preservation of Concrete and Masonry Constructions": 40 h
- examination preparation: 40 h

total: 180 h
Recommendation
none

Literature
Hand-outs and (selection):
5.26 Module: Building Physics I (bauiM1S27-BAUPH-I) [M-BGU-103950]

Responsible: Dr.-Ing. Engin Kotan
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Structural Engineering (Compulsory Elective Modules)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100039 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-100040 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
 - Applied Building Physics lecture: 30 h
 - Building Technology lecture: 30 h

independent study:
 - preparation and follow-up lectures Applied Building Physics: 30 h
 - examination preparation Applied Building Physics (partial exam): 30 h
 - preparation and follow-up lectures Building Technology: 30 h
 - examination preparation Building Technology (partial exam): 30 h

total: 180 h

Recommendation
none
Module: Building Physics II (bauIM1S28-BAUPH-II) [M-BGU-100060]

Responsible: Dr.-Ing. Engin Kotan
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108024</td>
<td>Practical Noise Control</td>
<td>3 CR</td>
<td>Zander</td>
</tr>
<tr>
<td>T-BGU-100042</td>
<td>Practical Fire Protection</td>
<td>3 CR</td>
<td>Schröder</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-108024 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-100042 with oral examination according to § 4 Par. 2 No. 2

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

see German version

Content

see German version

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Practical Noise Control lecture: 30 h
- Practical Fire Protection lecture: 30 h

independent study:

- preparation and follow-up lectures Practical Noise Control: 30 h
- examination preparation Practical Noise Control (partial exam): 30 h
- preparation and follow-up lectures Practical Fire Protection: 30 h
- examination preparation Practical Fire Protection (partial exam): 30 h

total: 180 h

Recommendation

none
Module: Materials Testing and Measuring Techniques (bauIM1S29-MATPRÜF) [M-BGU-100061]

M 5.28 Module: Materials Testing and Measuring Techniques (bauIM1S29-MATPRÜF) [M-BGU-100061]

Responsible: Dr.-Ing. Nico Herrmann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits 6

Grading scale Grade to a tenth

Recurrence Each winter term

Duration 1 term

Language German

Level 4

Version 1

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-100043</th>
<th>Materials Testing and Measuring Techniques</th>
<th>6 CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herrmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100043 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can explain the basic knowledge of materials testing in the field of construction materials and concrete structures connected with the application in engineering constructions (e.g. bridges, power plants, etc.). They can name the basics of measuring techniques and are able to record the relevant measuring parameters for high-level material testing. The students develop self-reliantly a measurement concept, which they apply and evaluate.

Content
- introduction to different measurement techniques and their principles
- material testing of construction materials and elements
- basics in testing techniques and concepts
- examples from current research projects

Module grade calculation
grade of the module is grade of the exam

Annotation
The number of participants in the courses is limited to 12 persons. In case of selection of participants participation will be preferentially provided to students further advanced in their studies.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Measuring Techniques in Civil Engineering lecture, exercise: 30 h
- Materials Testing in the Field of Concrete lecture: 30 h

independent study:
- preparation and follow-up lectures, exercises Measuring Techniques in Civil Engineering: 30 h
- preparation and follow-up lectures Materials Testing in the Field of Concrete: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
none
5.29 Module: Continuum Mechanics of Heterogeneous Solids (bauiM1S32-KONTIMECH) [M-BGU-100064]

Responsible: Prof. Dr.-Ing. Thomas Seelig

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 2 terms

Language: German

Level: 4

Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106196</td>
<td>Continuum Mechanics</td>
<td>3 CR</td>
<td>Franke</td>
</tr>
<tr>
<td>T-BGU-108879</td>
<td>Micromechanics of Heterogeneous Solids</td>
<td>3 CR</td>
<td>Schmidt</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-106196 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-108879 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

This module must not be selected together with the module Basics of Numeric Modeling [bauiM5P4-NUMGRUND].

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-BGU-100070 - Basics of Numeric Modeling must not have been started.

Competence Goal

see German version

Content

see German version

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Continuum Mechanics lecture: 30 h
- Mechanics of Heterogeneous Solids lecture: 30 h

independent study:

- preparation and follow-up lectures Continuum Mechanics: 30 h
- preparation and follow-up lectures Mechanics of Heterogeneous Solids: 30 h
- examination preparation Continuum Mechanics: 30 h
- examination preparation Mechanics of Heterogeneous Solids: 30 h

total: 180 h

Recommendation

none
Literature
Seelig, T.: Kontinuumsmechanik. Skript zur Vorlesung
Literatur Mechanik heterogener Festkörper:
5.30 Module: Finite Elements in Solid Mechanics (bauiM1S37-FEFKM) [M-BGU-100578]

Responsible: Prof. Dr.-Ing. Peter Betsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100998 | Finite Elements in Solid Mechanics | 6 CR | Betsch |

Competence Certificate
- ‘Teilleistung’ T-BGU-100998 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the ‘Teilleistung’

Prerequisites
none

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lectures, exercises: 60 h

independent study:
- preparation and follow-up: 45 h
- working on programming exercises: 30 h
- examination preparation and examination: 45 h

total: 180 h

Recommendation
module 'Basics in Finite Elements' [bauiM1S20-GRUNDFE]
5.31 Module: Numerical Structural Dynamics (bauiM1S38-NUMSTRDY) [M-BGU-100579]

Responsible: Prof. Dr.-Ing. Peter Betsch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
 Subject-Specific Supplements
 Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
6 | Grade to a tenth | Each summer term | 1 term | German | 4 | 1

Mandatory

T-BGU-100999 Computational Structural Dynamics 6 CR Betsch

Competence Certificate
- ‘Teilleistung’ T-BGU-100999 with oral examination according to § 4 Par. 2 No. 2
 details about the learning control see at the ‘Teilleistung’

Prerequisites
none

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
 • lectures, exercises: 60 h
 independent study:
 • preparation and follow-up: 45 h
 • working on programming exercises: 30 h
 • examination preparation and examination: 45 h
 total: 180 h

Recommendation
module Basics in Finite Elements [bauiM1S20-GRUNDFE]
Module: Tank Construction (bauIM1S39-BEHBAU) [M-BGU-100580]

Responsible: Dr. Peter Knödel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits	Grade to a tenth	Recurrence	Duration	Language	Level	Version
6 | Each winter term | 1 term | German | 4 | 2

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101001</td>
<td>Term Paper Tank Construction</td>
<td>3 CR</td>
<td>Knödel</td>
<td></td>
</tr>
<tr>
<td>T-BGU-101000</td>
<td>Tank Construction</td>
<td>3 CR</td>
<td>Knödel</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-101001 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-101000 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can design and construct tank and silo structures and they can assess the influences on the structural behavior of shell structures:

- They can apply scientific methods for the system analysis of tanks.
- They can develop problem solutions beyond the application of the regulations for tank constructions.
- They have the ability to work interdisciplinarily at the interface to plant engineering and construction.
- They can compile complex technical facts and impart them to a plenary assembly.

Content

- classification of tank and silo types
- application related material selection
- actions on storage structures: characteristics of wind loads (e.g. flow around cylinders), filling, internal pressure, earthquakes and explosions
- structural behavior of shell structure
- strength and stability check by linear and non-linear calculations under comparison of handouts with FE models
- design and construction
- specific problems

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 45 h
- discussion on term paper: 15 h

independent study:

- preparation and follow-up lectures, exercises: 20 h
- preparation of term paper (partial exam): 80 h
- examination preparation (partial exam): 20 h

total: 180 h
Recommendation
The contents of the lecture Basics in Steel Structures (6200504) are required. Contents of the modules Surface Structures and Dynamics of Structures [bauiM1P3-FTW-BD] as well as Steel and Composite Structures [bauiM1P2-STABISTB] are recommended.

Literature
lecture notes
DIN EN 1993-4-1: Bemessung und Konstruktion von Stahlbauten - Teil 4-1: Silos.
5.33 Module: Modeling in Solid Mechanics (bauiM1S40-MODFEST) [M-BGU-101673]

Responsible: Prof. Dr.-Ing. Peter Betsch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Structural Engineering (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 2

Mandatory
T-BGU-103223 Modeling Techniques in Solid Mechanics 6 CR Konyukhov

Competence Certificate
- 'Teilleistung' T-BGU-103223 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can explain and classify various numerical analysis of engineering structures based on geometrical models of different dimensionality bars, beams, shells and solids. They know the derivation of finite element models from the geometrical point of view together with corresponding hypothesis of deformation. They know, that this procedure is a model reduction and a continuous transformation from 3D continuum to the shell, beams and bar models. They can assign and use different computational methods and the corresponding set of finite elements for practical engineering problems.

Content
One- and multidimensional bodies are presented by differential geometry: provision of line and surface descriptions on the one hand and of selected curvilinear coordinate system for the description of three-dimensional solid bodies on the other hand. The kinematics of deformation is imparted in all cases with the associated forces on the one hand and the appropriate Dirichlet and Neumann boundary conditions on the other hand.

Available computational methods are explained: static methods with a-posteriori error estimation and mesh refinement; eigen value analyses and modal methods as well as their applications, e.g. with respect to stability problems; dynamic computations in implicit and explicit formulations; harmonic methods with application of resonance phenomena.

All models are illustrated with FEM software, including practical programming in ANSYS APDL.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 75 h

total: 180 h

Recommendation
course Introduction to Continuum Mechanics (6200607); module Basics of Finite Elements [bauiM1S20-GRUNDFE]
Literature
5.34 Module: Contact Mechanics (bauiM1S41-KONTMECH) [M-BGU-104916]

Responsible: Dr.-Ing. Marlon Franke
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2019)
- Subject-Specific Supplements (Usage from 4/1/2019)
- Study Focus II / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2019)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-109947 | Contact Mechanics | 6 CR | Franke |

Competence Certificate

- 'Teilleistung' T-BGU-109947 with oral examination according to § 4 Par. 2 No. 2
 details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students gain the ability to name the basics for the numerical simulation of contact problems. They can transfer these capabilities to the discussion of deformable bodies in contact. The students can describe the handling of general interface problems, non-smooth dynamics and inequality constraints. The students are able to apply formulations of interfaces based on collocation methods and recent integral formulations.

Content

The continuum mechanical description of deformable bodies (continua) with second-order condition is imparted. The formulation of contact conditions and friction laws is discussed. Further, methods for claiming of constraints is discussed. The contact contribution is emphasised particularly by the subsequent numerical implementation.

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises: 45 h
- examination preparation: 75 h

total: 180 h

Recommendation

course Introduction to Continuum Mechanics (6200607), module Basics of Finite Elements [bauiM1S20-GRUNDFE]

Literature

[1] Laursen: Computational Contact and Impact Mechanics
Module: Digital Planning and Building Information Modeling (bauIM1S42-DIGIPLAN) [M-BGU-105135]

Responsible: Tim Zinke

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules) (Usage from 10/1/2019)
Subject-Specific Supplements (Usage from 10/1/2019)
Study Focus II / Structural Engineering (Compulsory Elective Modules) (Usage from 10/1/2019)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

T-BGU-110382 Digital Planning and Building Information Modeling 6 CR Zinke

Competence Certificate
- 'Teilleistung' T-BGU-110382 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
further information see German version

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures/exercises, tutorials: 40 h
- project work, modeling, preparation of BIM flat pattern plan and report with presentation: 80 h

total: 180 h

Recommendation
course Computer Aided Design (CAD) (6200520)
course Steel and Composite Structures (6212801 und 6212802)

Literature
Module: Design and Construction in Metal and Lightweight Structures

Responsible: Prof. Dr.-Ing. Thomas Ummenhofer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)
- Subject-Specific Supplements (Usage from 4/1/2020)
- Study Focus II / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-110852 with examination of other type according to § 4 Par. 2 No. 3
- Details about the learning control see at the 'Teilleistung'

Prerequisites
The module must not be taken together with the former module Structures in Steel and Timber [bauiM1S10-BAUING-TSH].

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
Module will be offered newly as from winter term 2020/21.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 15 h
- feedback meetings: 10 h

independent study:
- working on design problems and structural details: 75 h
- preparation of report and final presentation: 75 h

total: 180 h

Recommendation
- course Basics in Steel Structures;
- module Steel and Composite Structures
5.37 Module: Timber Structures: Materials and Appropriate Design (bauiM1S44-BST-HB) [M-BGU-105371]

Responsibility: Dr.-Ing. Matthias Frese
Dr. Carmen Sandhaas

Organization: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)
- Subject-Specific Supplements (Usage from 4/1/2020)
- Study Focus II / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Module: Timber Structures: Materials and Appropriate Design 6 CR Frese, Sandhaas

Competence Certificate
- ’Teilleistung’ T-BGU-110853 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the ’Teilleistung’

Prerequisites
The module must not be taken together with the present modules Timber and Wood-Based Materials [bauiM1S13-BAUING-HHW] as well as Structures in Steel and Timber [bauiM1S10-BAUING-TSH].

Compeent Goal
see German version

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
Module will be offered newly as from winter term 2020/21.

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Building Materials of Timber Structures lecture/exercise: 30 h
- Material Adapted Constructions of Timber Structures lecture/exercise: 30 h

independent study:

- preparation and follow-up lectures/exercises Building Materials of Timber Structures: 30 h
- preparation and follow-up lectures/exercises Material Adapted Constructions of Timber Structures: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
participation in module Timber Structures [bauiM1S12-BAUING-HB]

Literature
lecture accompanying documents as well as lecture notes 'Timber and Wood-Based Materials' and 'Structures in Timber'
5.38 Module: Innovations and Developments in Steel and Timber Structures (bauiM1S45-INNO-MHB) [M-BGU-105372]

Responsible: Dr.-Ing. Matthias Albiez
Prof. Dr.-Ing. Philipp Dietsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)
- Subject-Specific Supplements (Usage from 4/1/2020)
- Study Focus II / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-110854 | Innovations and Developments in Metal and Lightweight Structures | 3 CR | Albiez |
| T-BGU-110855 | Innovations and Developments in Timber Structures | 3 CR | Dietsch |

Competence Certificate

- 'Teilleistung' T-BGU-110854 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-110855 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
The module must not be taken together with the modules Building Preservation and Innovations in Metal and Lightweight Structures [bauiM1S46-BWE-INNO-MLB] as well as Building Preservation and Innovations in Timber Structures [bauiM1S47-BWE-INNO-HB].

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
Module will be offered newly as from winter term 2020/21.

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Innovation and Development in Metal and Lightweight Structures lecture/exercise: 30 h
- Innovation and Development in Timber Structures lecture/exercise: 30 h

independent study:

- preparation and follow-up lectures/exercises Innovation and Development in Metal and Lightweight Structures: 30 h
- examination preparation Innovation and Development in Metal and Lightweight Structures (partial examination): 30 h
- preparation and follow-up lectures/exercises Innovation and Development in Timber Structures: 30 h
- examination preparation Innovation and Development in Timber Structures (partial examination): 30 h

total: 180 h

Recommendation
participation in module Timber Structures [bauiM1S12-BAUING-HB]

Literature
lecture accompanying documents
5.39 Module: Building Preservation and Innovations in Metal and Lightweight Structures (bauiM1S46-BWE-INNO-MLB) [M-BGU-105373]

- **Responsible:** Prof. Dr.-Ing. Thomas Ummenhofer
- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
- **Part of:**
 - Study Focus I / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)
 - Subject-Specific Supplements (Usage from 4/1/2020)
 - Study Focus II / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Building Preservation in Steel Structures</th>
<th>3 CR</th>
<th>Ummenhofer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-110856</td>
<td>Innovations and Developments in Metal and Lightweight Structures</td>
<td>3 CR</td>
<td>Albiez</td>
</tr>
<tr>
<td>T-BGU-110854</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- ‘Teilleistung’ T-BGU-110856 with written examination according to § 4 Par. 2 No. 1
- ‘Teilleistung’ T-BGU-110854 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective ‘Teilleistung’

Prerequisites
The module must not be taken together with the modules Building Preservation of Steel and Timber Structures [bauiM1S11-BAUING-BSH] as well as Innovations and Developments in Steel and Timber Structures [bauiM1S45-INNO-MHB].

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
Module will be offered newly as from winter term 2020/21.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Building Preservation of Steel Structures lecture: 30 h
- Innovation and Development in Timber Structures lecture/exercise: 30 h

independent study:
- preparation and follow-up lectures Building Preservation of Steel Structures: 30 h
- examination preparation Building Preservation of Steel Structures (partial examination): 30 h
- preparation and follow-up lectures/exercises Innovation and Development in Metal and Lightweight Structures: 30 h
- examination preparation Innovation and Development in Metal and Lightweight Structures (partial examination): 30 h

total: 180 h

Recommendation
none

Literature
lecture accompanying documents
Module: Building Preservation and Innovations in Timber Structures (bauiM1S47-BWE-INNO-HB) [M-BGU-105374]

Responsible: Prof. Dr.-Ing. Philipp Dietsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)

Subject-Specific Supplements (Usage from 4/1/2020)

Study Focus II / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2020)

Credits 6

Grading scale Grade to a tenth

Recurrence Each winter term

Duration 1 term

Language German

Level 4

Version 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-110857</td>
<td>Building Preservation in Timber Structures</td>
<td>3 CR</td>
<td>Frese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-110855</td>
<td>Innovations and Developments in Timber Structures</td>
<td>3 CR</td>
<td>Dietsch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-110857 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-110855 with oral examination according to § 4 Par. 2 No. 2

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites

The module must not be taken together with the modules Building Preservation of Steel and Timber Structures [bauiM1S11-BAUING-BSH] as well as Innovations and Developments in Steel and Timber Structures [bauiM1S45-INNO-MHB].

Competence Goal

see German version

Content

see German version

Module grade calculation

Grade of the module is CP weighted average of grades of the partial exams

Annotation

Module will be offered newly as from winter term 2020/21.

Workload

Contact hours (1 HpW = 1 h x 15 weeks):

- Building Preservation of Timber Structures lecture/exercise: 30 h
- Innovation and Development in Timber Structures lecture/exercise: 30 h

Independent study:

- preparation and follow-up lectures Building Preservation of Timber Structures: 30 h
- examination preparation Building Preservation of Timber Structures (partial examination): 30 h
- preparation and follow-up lectures/exercises Innovation and Development in Timber Structures: 30 h
- examination preparation Innovation and Development in Timber Structures (partial examination): 30 h

Total: 180 h

Recommendation

Participation in module Timber Structures [bauiM1S12-BAUING-HB]

Literature

Lecture accompanying documents
Module: Uncertainty Modeling, Artificial Neural Networks and Optimization in Structural Analysis (bauIM1S48-KNN) [M-BGU-105929]

Responsible: Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Structural Engineering (Compulsory Elective Modules) (Usage from 4/1/2022)

Credits 6

Grading scale Grade to a tenth

Recurrence Each summer term

Duration 1 term

Language German

Level 4

Version 1

Mandatory

| T-BGU-111932 | Uncertainty Modeling, Artificial Neural Networks and Optimization in Structural Analysis | 6 CR | Freitag |

Competence Certificate
- ‘Teilleistung’ T-BGU-111932 with oral examination according to § 4 Par. 2 No. 2

Prerequisites
- none

Competence Goal
The students achieve competences in structural analysis with uncertain data. They are trained to consider uncertain information for the modeling and the computation of structures. Additionally, the students get competences in the handling of artificial neural networks and optimization approaches in structural mechanics.

Content
Uncertainty models are presented for the quantification of uncertain data and the consideration of uncertain model assumptions. The computation with uncertain numbers is introduced by analytical approaches. But the focus is on numerical approaches, which can be applied to structural analyses, e.g., based on the finite element method. To reduce the computation time and the required computational resource, numerically efficient surrogate models are presented. Especially, artificial neural network models are discussed, which are also applied to the optimization of structures. The module consists of the following courses:

- Structural Analysis with Uncertain Data
- Artificial Neural Networks in Structural Analysis
- Structural Optimization

Module grade calculation
grade of the module is grade of the exam

Annotation
offered newly as from summer term 2022

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Structural Analysis with Uncertain Data, lecture: 30 Std.
- Artificial Neural Networks in Structural Analysis, lecture: 15 Std.
- Structural Optimization, lecture: 15 Std.

independent study:

- preparation and follow-up lectures Structural Analysis with Uncertain Data: 30 h
- preparation and follow-up lectures Artificial Neural Networks in Structural Analysis: 15 h
- preparation and follow-up lectures Structural Optimization: 15 h
- examination preparation: 60 h

total: 180 h

Recommendation
- none
5.42 Module: Urban Water Infrastructure and Management (bauiM2P10-URBIM) [M-BGU-103358]

Responsible: PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Modules)
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Modules)
- Study Focus II / Water and Environment (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-106600 Urban Water Infrastructure and Management 6 CR Fuchs

Competence Certificate
- 'Teilleistung' T-BGU-106600 with written examination according to § 4 Par. 2 No. 1
- Details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students analyze and evaluate basic methods of urban water management. They recognize the interactions between natural and technical systems. They acquire knowledge necessary to identify process engineering solutions and to implement them into functional systems (infrastructure elements). Students are able to describe urban water management issues in the context of watersheds and to take appropriate and environmentally-sound decisions in terms of energy efficiency and costs.

Content
This module provides a deep understanding of basic principles needed for the design, analysis and evaluation of urban water systems. The concept of system analysis is introduced to develop models that consider the most important biological, chemical and physical processes and are used to solve water management problems. Based on a detailed consideration of individual elements (subsystems), an overall picture of the water management system Urban Settlement and its interaction with surface and groundwater bodies can be gained. For this purpose, theoretical tools are developed and modeling approaches are reviewed. Students consider the factors energy and costs in the analysis and assessment of water management systems.

Module grade calculation
grade of the module is grade of the exam

Annotation
keine

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

total: 90 h

Recommendation
course Sanitary Environmental Engineering (6200603)

Literature
Module: Numerical Fluid Mechanics (bauIM2P5-NUMFLMECH) [M-BGU-103375]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Water and Environment (Compulsory Modules)
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Modules)
- Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-BGU-106758 Numerical Fluid Mechanics 6 CR Uhlmann

Competence Certificate
- 'Teilleistung' T-BGU-106758 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are enabled to describe the fundamental approaches of numerical solution of flow problems. They are capable of evaluating the advantages and disadvantages of these approaches in the various areas of application, enabling them to make an appropriate choice. Participants are able to apply the numerical methods to simple flow problems; this involves the generation and application of basic computer programs. They are able to analyze the results with respect to precision, stability and efficiency.

Content
This module constitutes a general introduction to the numerical solution of flow-related problems. The mathematical properties of the conservation equations are analyzed. The principles of numerical discretization are studied with the aid of the finite-difference and the finite-volume method. The concept of numerical stability is introduced, and various techniques of error analysis are presented theoretically and by way of examples.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h
independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h
total: 180 h

Recommendation
modules Hydromechanics [bauIBGP04-HYDRO] (understanding of physical processes of advection and diffusion, handling of Navier-Stokes equations) and Advanced Mathematics [bauIBGP05-HM1, bauIBGP06-HM2, bauIBGP08-HM3, bauIBFW1-PDGL] (analysis - partial differential equations, Fourier analysis, series expansion, complex numbers; linear algebra - matrices, determinants, eigenvalue analysis, numerics - discrete number representation, round-off, floating point operations, numerical treatment of partial differential equations)
5.44 Module: Hydraulic Engineering (bauiM2P6-ADVHYENG) [M-BGU-103376]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111928</td>
<td>Design Exercise River Engineering</td>
<td>1 CR</td>
<td>Rodrigues Pereira da Franca</td>
</tr>
<tr>
<td>T-BGU-111929</td>
<td>Design Exercise Hydraulic Structures</td>
<td>1 CR</td>
<td>Rodrigues Pereira da Franca</td>
</tr>
<tr>
<td>T-BGU-106759</td>
<td>Hydraulic Engineering</td>
<td>4 CR</td>
<td>Rodrigues Pereira da Franca</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-111928 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-111929 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106759 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students will be able to describe and analyse basic processes linked to the hydraulics of rivers and hydraulic structures. They are able to carry the design of engineering works in rivers and the dimensioning of hydraulic structures with suitable approaches.

Based on the acquired process knowledge, they are able to analyse the results of the design in a critical manner.

Students are able to use and link their knowledge logically. They can work in a reflexive and self-critical manner.

Content

The module provides students with theoretical and practical knowledge of hydraulics applied to problem solving in the context of river engineering and for the design of hydraulic structures.

The course **River Engineering** contains the following topics:

- overview of catchment and river network basic processes and in the context of human usage and safety considering at the same time preservation of natural processes;
- sediment management; calculation and design of river engineering works such channels, riverbank protection, levees, groynes, detention basins; river restoration works.

In the course **Design of Hydraulics Structures** the following topics will be discussed in depth:

- overview: Hydraulic structures and water management and their integration in the river system
- design procedure, engineer standards and state of the art in hydraulic structures

Module grade calculation

grade of the module is grade of the exam

Annotation

As from summer term 2022 two 'Design Exercises' are examination prerequisites.
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- River Engineering lecture/exercise: 30 h
- Design of Hydraulic Structures lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises River Engineering: 15 h
- working on the 'Design Exercise River Engineering' (examination prerequisite): 25 h
- preparation and follow-up lecture/exercises Design of Hydraulic Structures: 15 h
- working on the 'Design Exercise Hydraulic Structures' (examination prerequisite): 25 h
- examination preparation: 40 h

total: 180 h

Recommendation
none

Literature
5.45 Module: Water and Energy Cycles (bauiM2P8-WATENCYC) [M-BGU-103360]

Responsible: Prof. Dr.-Ing. Erwin Zehe
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Water and Environment (Compulsory Modules)
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Modules)
- Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

Mandatory
T-BGU-106596 Water and Energy Cycles 6 CR Zehe

Competence Certificate
- "Teilleistung" T-BGU-106596 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to explain the most relevant processes of Hydrology including their feedbacks and limitations. They know the concepts to describe and predict these processes in the context of science and water management. Furthermore are they able to independently apply related computer-based tools for analysis and prediction for standard situations. Students are able to evaluate the required data and to quantify and evaluate the uncertainties related to the simulations and predictions.

Content
This module deepens the fundamentals of the water and energy cycles with particular regard to:

- the soil as the central control element of the water and energy cycle and the interplay of soil water and ground heat balance
- evaporation, energy balance and processes in the atmospheric boundary layer
- runoff and evaporation regimes in different hydro-climates;
- water balance and floods at the catchment scale and statistics for water management
- the interplay between runoff processes and soil water balance, and the soil as filter system
- concepts of hydrological similarity and comparative hydrology
- process-based and conceptual models to simulate water balances and predict flood

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 40 h
- preparation of term paper (examination): 80 h

total: 180 h

Recommendation
course Hydrology (6200511) and module Water Resources Management and Engineering [bauiBFW9-WASSRM];
knowledge of programming with Matlab or another similar programming language, otherwise the attendance of the course 'Introduction to Matlab' (6224907) is strongly recommended
Literature

5.46 Module: Advanced Fluid Mechanics (bauIM2P9-ADVFM) [M-BGU-103359]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Modules)
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Modules)
- Study Focus II / Water and Environment (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-106612 Advanced Fluid Mechanics 6 CR Eiff

Competence Certificate
- 'Teilleistung' T-BGU-106612 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students acquire a firm understanding of the fundamental mechanics of fluids with emphasis towards environmental flows on the basis of the local conservation laws. They are able to differentiate and apply the different set of assumptions and methods in order to better understand the different flow classes and solutions. They are capable of solving basic flow problems after forming the relevant assumptions. Participants are able to use the knowledge and competence gained for more detailed and applied studies of environmental flows.

Content
This module covers the fundamental mechanics of fluids forming the foundation of environmental fluid mechanics. The approach is based on the basic local conservation laws. Emphasis is on the phenomena and the possible analytical solutions associated with the various flow classes. Topics covered include the general and special forms of the governing equations, flow kinematics, viscous incompressible flows, ideal-fluid flows, shallow flows, and buoyancy effects in fluids. Waves and turbulence are also addressed as well as different methods of analysis such as scaling.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 30 h
- home work on exercises: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
modules Hydromechanics [bauIBGP04-HYDRO] and Advanced Mathematics for Civil Engineers [bauIBGP05-HM1, bauIBGP06-HM2, bauIBGP08-HM3, bauIBFW1-PDGL] (analysis, differential and integral calculus, ordinary and partial differential equations, linear algebra, Fourier analysis, complex numbers)

Literature
Module: Subsurface Flow and Contaminant Transport (bauIM2S03-HY3) [M-BGU-103872]

Responsible: Prof. Dr.-Ing. Erwin Zehe

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits
6

Grading scale
Grade to a tenth

Recurrence
Each summer term

Duration
1 term

Language
English

Level
4

Version
1

Mandatory

| T-BGU-106598 | Transport and Transformation of Contaminants in Hydrological Systems | 6 CR | Zehe |

Competence Certificate

- 'Teilleistung' T-BGU-106598 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students are able to explain processes of transport and decomposition related to nutrients and pollutants in surface runoff and in the unsaturated zone of rural catchments.

Students are able to independently apply analytical and process-based models: estimation of model parameters from field investigations, estimation of water and substance fluxes and balance in the critical zone, statements on the risks related to contaminant mobilization in natural soils.

Students are able to evaluate the limits of applicability of modeling approaches in natural, heterogeneous soils.

Content

Transport processes in the unsaturated zone related to infiltration, surface runoff, and movement of soil water:

- advective-dispersive transport in homogeneous and heterogeneous soils
- particulate transport by erosion
- adsorption
- chemical and microbial processes of reaction and decay in soils
- modeling contaminant transport (e.g. pesticides) in soils using analytical models
- risk assessment for pesticides in soils (transport, residence times, adsorption, decay)
- estimation of model parameters from field exploration
- parameterization of adsorption isotherms
- breakthrough curve

Computer exercise:

- simulation of water and substance transport with process-based models
- independently conducted risk-assessments for pesticides using simple simulation techniques

Module grade calculation

grade of the module is grade of the exam

Annotation

none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
modules Water and Energy Cycles [bauiM2P8-WATENCYC] and Hydrological Measurements in Environmental Systems [bauiM2S05-HY5]; knowledge of programming with Matlab; otherwise, it is strongly recommended to attend the course 'Introduction to Matlab' (6224907)

Literature
Module: Analysis of Spatial Data (bauiM2S04-HY4) [M-BGU-103762]

- **Responsible:** Prof. Dr.-Ing. Erwin Zehe
- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
- **Part of:**
 - Study Focus I / Water and Environment (Compulsory Elective Modules)
 - Subject-Specific Supplements
 - Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits
- **6**

Grading scale
- Grade to a tenth

Recurrence
- Each summer term

Duration
- 1 term

Language
- English

Level
- 4

Version
- 1

Mandatory
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106605</td>
<td>Geostatistics</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106605 with oral examination according to § 4 Par. 2 No. 2
- Details about the learning control see at the 'Teilleistung'

Prerequisites
- none

Competence Goal
- Students can explain and apply methods for analysis and simulation of spatially and temporally distributed environmental data. Based on this, they are capable of setting up experimental designs for environmental monitoring and evaluate the suitability of available data for different tasks. Students are able to critically assess the results of analysis and simulation tools and to quantify and evaluate the related uncertainties.

Content
- Fundamentals of environmental systems theory, environmental monitoring and experimental design (data types, scale triplet, measuring methods)
- Experimental variograms, directional variograms, indicator variograms, variogram fitting, anisotropy
- Kriging techniques: Ordinary Kriging, screening properties of Kriging, BLUE, pure nugget effect, cross validation, RMSE
- Estimation of spatial patterns in nonstationary data (External Drift Kriging, Simple Updating)
- Simulation of spatial patterns: turning Bands Simulation, smoothing problems of interpolation

Module grade calculation
- Grade of the module is grade of the exam

Annotation
- none

Workload
- Contact hours (1 HpW = 1 h x 15 weeks):
 - Lecture/exercise: 60 h

Independent study:
- Preparation and follow-up lecture/exercises: 60 h
- Examination preparation: 60 h

- Total: 180 h

Recommendation
- Basic knowledge in statistics
- Module Hydrological Measurements in Environmental Systems [bauiM2S05-HY5]
- Knowledge of programming with Matlab; otherwise, it is strongly recommended to attend the course 'Introduction to Matlab' (6224907)
Literature
5.49 Module: Hydrological Measurements in Environmental Systems (bauiM2S05-HY5) [M-BGU-103763]

Responsible: Dr. Jan Wienhöfer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Water and Environment (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-BGU-106599 Hydrological Measurements in Environmental Systems 6 CR Wienhöfer

Competence Certificate
- 'Teilleistung' T-BGU-106599 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students know and understand measurement principles for catchment properties, catchment states, and water fluxes. They are able to independently plan and conduct measurements on various scales (soil column, plot, hillslope, catchment) in the field and the laboratory. Students can analyze observation data with statistical methods, and are able to quantify and evaluate the related uncertainties. Students are able to present the related results in teamwork.

Content
- introduction to environmental observations (scales, uncertainties), statistical data analysis and error analysis
- seminar on hydrological measurement devices in field and laboratory: Discharge, soil moisture, infiltration, hydraulic conductivity
- lab and field work (several days) where students conduct hydrological measurements

Module grade calculation
grade of the module is grade of the exam

Annotation
The course requires a minimum number of 6 and a maximum number of 30 participants. Please register online for the course (not exam!), 6224807, via the Campus portal (in exceptional cases via e-mail to the responsible lecturer). Participants are selected according to their progress of study considering the following order: students of Water Science and Engineering, students of Civil Engineering, students of Geocology.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- laboratory and field exercise: 70 h
independent study:
- preparation and follow-up laboratory and field exercises: 10 h
- preparation of presentations and reports (exam): 100 h
total: 180 h

Recommendation
knowledge in hydrology

Literature
notes for field exercises
Module: Environmental Communication (bauiM2S07-HY7) [M-BGU-101108]

Responsible: Dr. Charlotte Kämpf
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106620</td>
<td>6 CR</td>
<td>Examination Prerequisite Environmental Communication</td>
<td>0 CR</td>
<td>Kämpf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101676</td>
<td>6 CR</td>
<td>Environmental Communication</td>
<td>0 CR</td>
<td>Kämpf</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- ‘Teilleistung’ T-BGU-106620 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- ‘Teilleistung’ T-BGU-101676 with examination of other type according to § 4 Par. 2 No. 3

details about the learning controls see at the respective ‘Teilleistung’

Prerequisites
none

Competence Goal
(see German version)

Content
(see German version)

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- **seminar (lecture):** 20 h
- **independent study:**
 - preparation and follow-up seminar: 40 h
 - preparation of literature annotations and short presentation (exam prerequisite): 45 Std.
 - preparation of presentation, manuscript and poster (exam): 75 Std.

 total: 180 h

Recommendation
none

Literature
(see German version)
Module: Groundwater Management (bauiM2S08-HY8) [M-BGU-100340]

M 5.51

Responsible: Dr. Ulf Mohrlok
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100624 | Groundwater Hydraulics | 3 CR | Mohrlok |
| T-BGU-100625 | Numerical Groundwater Modeling | 3 CR | Mohrlok |

Competence Certificate

- 'Teilleistung' T-BGU-100624 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-100625 with examination of other type according to § 4 Par. 2 No. 3

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Based on the understanding of hydrogeological settings and fluid-mechanical processes in the subsurface students can characterize different kinds of groundwater systems by means of hydraulics. They can quantify the relevant flow and transport processes with simple analytical and numerical methods for different problems regarding groundwater quantity and quality. Thereby, they are able to conceive and evaluate the relations important for the management of groundwater resources.

Content

- groundwater systems
- fluid-mechanical processes in porous media
- methods of balancing groundwater flow and solute transport processes
- examples of groundwater management
- project work

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Groundwater Hydraulics lecture/exercise: 30 h
- Numerical Groundwater Modeling presentations/project discussions: 15 h

independent study:

- preparation and follow-up lecture/exercises, working on exercises Groundwater Hydraulics: 40 h
- examination preparation Groundwater Hydraulics (partial exam): 20 h
- project work Numerical Groundwater Modeling, incl. presentation and preparation of the report (partial exam): 80 h

total: 185 h

Recommendation

basic knowledge in fluid mechanics, hydrology, solute transport and numerical methods
Literature

5.52 Module: Hydro Power Engineering (bauIM2S11-WB3) [M-BGU-100103]

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits: 6
Grading Scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

| T-BGU-100139 | Hydro Power Engineering | 6 CR | Oberle |

Competence Certificate
- 'Teilleistung' T-BGU-100139 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to describe the different turbine types and can define selection criteria for their usage. They are able to reproduce the basic approaches in the planning and design of hydropower plants and to make own calculations to select turbines. They can select and apply the necessary tools in a methodical matter.
Students are able to discuss the current political conditions in terms of energy policy with other students and support their personal opinion on these issues with technical arguments.

Content
The course explains the technical background for planning and designing waterpower plants. Among others, it covers the constructional characteristics of river and high-pressure power plants, the operating modes and selection criteria of different types of turbines as well as electro-technical aspects of the plants' operation. In addition, ecological aspects and energy policy are considered as frame conditions. The lecture sessions are complemented by the presentation of current projects and excursions.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
course Hydraulic Engineering and Water Management (6200511)

Literature
Folienumdrucke;
5.53 Module: Waterway Engineering (bauIM2S12-WB4) [M-BGU-103392]

Responsible: Dr.-Ing. Andreas Kron

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Water and Environment (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Water and Environment (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106779</td>
<td>Seminar Paper 'Waterway Engineering'</td>
<td>1 CR</td>
<td>Kron</td>
</tr>
<tr>
<td>T-BGU-106780</td>
<td>Waterway Engineering</td>
<td>5 CR</td>
<td>Kron</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-106779 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106780 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students are knowledgeable about the various types of navigable waterways and their hydraulic structures. They are able to describe and apply the hydraulic basics for the design of these hydraulic structures and the interaction between ship and waterway. Students can assign the tasks and responsibilities of waterway engineering to the administrative structure of the waterways and shipping.

Content

- inland waterways
- types of navigation locks and ship lifts
- hydraulics and design of navigation locks and ship lifts
- reinforcement of embankments, banks and beds
- interaction ship-waterway

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lectures/exercises: 30 h
- preparation of the seminar paper (exam prerequisite): 30 h
- examination preparation: 60 h

total: 180 h

Recommendation

course Hydraulic Engineering and Water Management (6200511)
5.4 Module: Environmental Fluid Mechanics (bauiM2S19-SM5) [M-BGU-103383]

Responsible: Prof. Dr. Olivier Eiff

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Water and Environment (Compulsory Elective Modules)

Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-106767 | Environmental Fluid Mechanics | 6 CR | Eiff |

Competence Certificate

- 'Teilleistung' T-BGU-106767 with written examination according to § 4 Par. 2 No. 1

details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

Students identify fundamental hydrodynamic processes in the natural environment in water and air applications and solve related problems. They can relate the observed phenomena to fundamental principles of hydrodynamics and to the specific nature of the flow conditions. They can critically evaluate the different models and approximations made to obtain solutions and predictions and can make first estimates.

Content

This module covers the fundamental concepts and flow models of environmental fluid mechanics in both water and air. The topics include turbulence structure in rivers and open channels, diffusion and dispersion, atmospheric boundary layers, internal waves, instabilities and mixing, stratified turbulence, buoyant jets and plumes.

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation

modules Advanced Fluid Mechanics [bauiM2P9-ADVFM], Analysis of Turbulent Flow [bauiM2S32-NS3]
5.55 Module: Advanced Computational Fluid Dynamics (bauiM2S21-NS2) [M-BGU-103384]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Water and Environment (Compulsory Elective Modules)

Subject-Specific Supplements
Study Focus II / Water and Environment (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106769</td>
<td>Parallel Programming Techniques for Engineering</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-BGU-106768</td>
<td>Numerical Fluid Mechanics II</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-106769 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-106768 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

module Numerical Fluid Mechanics [bauiM2P5-NUMFLMECH] must be completed

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-BGU-103375 - Numerical Fluid Mechanics must have been passed.

Competence Goal

Students are able to numerically solve simplified flow problems based upon the Navier-Stokes equations in an independent fashion. This involves the design of a solution method, the analysis of its properties (concerning stability, precision, computational effort), the algorithmic implementation, the validation with respect to appropriate test cases, and the final documentation of the results. Furthermore, participants of this course are enabled to judge techniques for the use of massively parallel computer systems to solve fluid mechanics problems as to their efficiency and applicability. They are capable of applying the appropriate parallel programming techniques to selected model problems.

Content

In the present module, advanced skills in the numerical solution of fluid mechanics problems are imparted, building upon the material of the course Numerical Fluid Mechanics I. Here, various numerical solution methods for the time-dependent Navier-Stokes equations in several spatial dimensions are demonstrated with the aid of practical examples. This includes the following aspects: coupling and decoupling of velocity and pressure fields in incompressible flows, numerical treatment of discontinuities (shock waves, hydraulic jumps), computation of scalar transport, numerical tracking of inertial particles, linear stability analysis.

The course Parallel Programing Techniques for Engineering Problems conveys the fundamental programming concepts for massively-parallel computer systems. First, the common parallel computer architectures and the most widely used programming paradigms are introduced. Then techniques for implementing standard algorithms of numerical fluid mechanics (and other disciplines involving field problems) are presented, analyzed and practiced with the aid of the Message Passing Interface (MPI) standard.

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Annotation

none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Parallel Programming Techniques for Engineering Problems lecture, exercise: 30 h
- Numerical Fluid Mechanics II lecture, exercise: 30 h

independent study:

- preparation and follow-up lectures, exercises Parallel Programming Techniques for Engineering Problems: 30 h
- examination preparation Parallel Programming Techniques for Engineering Problems (partial exam): 30 h
- preparation and follow-up lectures, exercises Numerical Fluid Mechanics II: 30 h
- examination preparation Numerical Fluid Mechanics II (partial exam): 30 h

total: 180 h

Recommendation
Programing skills in at least one compiler language (C,C++, FORTRAN or equivalent)

Literature
T.G. Mattson, B.A. Sanders, B.L. Massingill "Patterns for Parallel Programming" Addison-Wesley, 2004.
5 MODULES

5.56 Module: Project Studies in Water Resources Management (BAUIM2S33-WB6) [M-BGU-103394]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Dr.-Ing. Frank Seidel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Civil Engineering, Geo- and Environmental Sciences</td>
</tr>
<tr>
<td>Part of:</td>
<td>Study Focus I / Water and Environment (Compulsory Elective Modules)</td>
</tr>
<tr>
<td></td>
<td>Subject-Specific Supplements</td>
</tr>
<tr>
<td></td>
<td>Study Focus II / Water and Environment (Compulsory Elective Modules)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

Competence Certificate

- 'Teilleistung' T-BGU-106783 with examination of other type according to § 4 Par. 2 No. 3

details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

see German version

Content

see German version

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture, exercise: 30 h

independent study:

- preparation and follow-up lectures, exercises: 30 h
- preparation of term paper (exam): 120 h

total: 180 h

Recommendation

module Flow and Sediment Dynamics in Rivers [BAUIM2S35-WB8]
5.57 Module: Numerical Flow Modeling in Hydraulic Engineering (bauLM2S34-WB7) [M-BGU-103390]

- **Responsible:** Dr.-Ing. Peter Oberle
- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
- **Part of:** Study Focus I / Water and Environment (Compulsory Elective Modules) Subject-Specific Supplements Study Focus II / Water and Environment (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106776 Numerical Flow Modeling in Hydraulic Engineering</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106776 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
basic knowledge of hydrology, hydraulic engineering and water management as well as open channel hydraulics

Literature
lecture notes
Module: Hydraulic Structures (bauiM2S36-WB9) [M-BGU-103389]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Water and Environment (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits 6
Grading scale Grade to a tenth
Recurrence Each term
Duration 2 terms
Language English
Level 4
Version 2

Mandatory
<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106774</td>
<td>Groundwater Flow around Structures</td>
<td>3 CR</td>
<td>Trevisan</td>
</tr>
<tr>
<td>T-BGU-110404</td>
<td>Interaction Flow - Hydraulic Structures</td>
<td>3 CR</td>
<td>Gebhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106774 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-110404 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
The module must not be selected together with the module Interaction Flow - Building Structure [bauiM2S16-SM2].

Competence Goal
Students are able to analyze and calculate steady and unsteady flow forces on hydraulic structures. They can describe groundwater flow processes and derive flow parameters with common measurement calculations. Based on the acquired knowledge, they can analyze concepts for preventing groundwater-related structural damage in a critical manner. Students characterize and categorize flow-induced structural vibrations. They can apply their knowledge to application examples.

Content
In this module, the following topics are discussed in depth:
- potential theory
- groundwater flow
- structural adjustment to groundwater flow
- determination of hydrostatic and hydrodynamic flow forces
- overview of sealing mechanisms: flood sluices, weirs, gates
- flow-induced structural vibrations

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Groundwater Flow around Structures lecture/exercise: 30 h
- Interaction Flow - Hydraulic Structures lecture/exercise: 30 h
independent study:
- preparation and follow-up lecture/exercises Groundwater Flow around Structures: 30 h
- examination preparation Groundwater Flow around Structures (partial exam): 30 h
- preparation and follow-up lecture/exercises Interaction Flow - Hydraulic Structures: 30 h
- examination preparation Interaction Flow - Hydraulic Structures (partial exam): 30 h

total: 180 h

Recommendation
none
Literature

C. Lang, Skript Interaktion Strömung - Wasserbauwerk
5.59 Module: Experimental Hydraulics and Measuring Techniques (bauiM2S37-WB10) [M-BGU-103388]

Responsible: Dr.-Ing. Frank Seidel

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits 6

Grading scale Grade to a tenth

Recurrence Each winter term

Duration 1 term

Language German/English

Level 4

Version 2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106773</td>
<td>Experimental Hydraulics II</td>
<td>3 CR</td>
<td>Seidel</td>
</tr>
<tr>
<td>T-BGU-110411</td>
<td>Flow Measurement Techniques</td>
<td>3 CR</td>
<td>Gromke</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106773 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-110411 with oral examination according to § 4 Par. 2 No. 2
details about the learning controls see at the respective 'Teilleistung'

Prerequisites
The module must not be selected together with the module Experimental Techniques II: Measurement Techniques [bauiM2S18-SM4].

Competence Goal
Students are able to describe the principles of different flow measurement methods and combine this information with the basics of today's flow measurement technology. They have basic knowledge about the structure and can analyze the suitability of measurement methods and set application boundaries. Students have basic knowledge about experimentation in hydraulics. They know the similarity mechanical requirements and assign them to the hydromechanical basics. Students are able to analyze applications in the field of multiphase hydraulics and select suitable model concepts. They can present their own thoughts and ideas in a structured manner and discuss the themes with specialists.

Content
In this module, the following topics will be discussed in depth:

- basic equations in fluid mechanics
- measurement methods and their fields of application
- experimental models with movable beds
- experiments related to multiphase flow problems (water-air, water-solid)

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Flow Measurement Techniques lecture/exercise: 30 h
- Experimental Hydraulics II lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Flow Measurement Techniques: 30 h
- examination preparation Flow Measurement Techniques (partial exam): 30 h
- preparation and follow-up lecture/exercises Experimental Hydraulics II: 30 h
- preparation of term paper (partial exam): 30 h

total: 180 h

Recommendation
module Experiments in Fluid Mechanics [bauiM2S39-SM6], hydraulic lab practice
5.60 Module: Water Distribution Systems (bauiM2S38-WB11) [M-BGU-104100]

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2018)
Subject-Specific Supplements (Usage from 4/1/2018)
Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2018)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-108485</th>
<th>Project Report Water Distribution Systems</th>
<th>2 CR</th>
<th>Oberle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108486</td>
<td>Water Distribution Systems</td>
<td>4 CR</td>
<td>Oberle</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-108485 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-108486 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students will have profound knowledge of the components and operational requirements of water supply systems. They are enabled to plan, design and optimize water distribution systems. They are capable to critically analyze concepts and designs based on their knowledge. Participants are able to set up and apply numerical models of water distribution systems for planning and analysis. Students have competences in work organization, presentation and discussion of results.

Content

The module covers the following topics:

- fundamentals of water distribution
- fundamentals of water distribution system modeling
- introduction to the software Epanet (water distribution system model) and ArcGIS (geographic information system)
- water demand
- water losses
- calibrating a water distribution system model
- designing pipe networks, storage tanks and pump stations
- application of the technical standards (DVGW)

The participants apply the theoretical knowledge to analyze and design an exemplary water distribution network.

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 30 h
- project work water distribution (exam prerequisite): 60 h
- examination preparation: 30 h

total: 180 h

Recommendation

hydromechanics (specifically pipe hydraulics)
Literature
Schrifttum zur Vorlesung (auf Deutsch und Englisch)
Module: Experiments in Fluid Mechanics (bauIM2S39-SM6) [M-BGU-103377]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106760</td>
<td>Experiments in Fluid Mechanics</td>
<td>6 CR</td>
<td>Eff</td>
</tr>
</tbody>
</table>

Competence Certificate

- ‘Teilleistung’ T-BGU-106760 with examination of other type according to § 4 Par. 2 No. 3
- details about the learning control see at the ‘Teilleistung’

Prerequisites

- none

Competence Goal

Students relate the hydrodynamics theory and physical concepts to the observed physical reality. They apply their knowledge and skills for the comparative analysis of basic flow situations in physical models, using appropriate measurement technologies. They assess and evaluate the results and limitations by comparing their results with theoretical deductions. They extend their results of phenomena-oriented experiments with regard to practical applications in technical hydraulics and environmental flows. Acquired competence: operation of test facilities and instrumentation, data analysis and basic statistical error analysis, teamwork, written and oral communication.

Content

Lecture:
- typical set-up of hydraulic and aerodynamic models
- dimensional analysis, dimensionless parameters
- measurement instrumentation
- introduction to statistical error analysis
- analogy numerical/physical modeling, model distortion
- technical writing and oral presentation

Physical experiments:
- pipe flow with orifice plate
- open channel flow with gates and hydraulic jumps
- Venturi pipe flow with cavitation- Settling velocities of spheres
- diffusion of a turbulent air jet
- turbulent wake
- dam leakage

Module grade calculation

grade of the module is grade of the exam

Annotation

- none
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/lab exercise: 60 h

independent study:

- preparation and follow-up lectures: 30 h
- preparation of laboratory reports (part of the examination): 60 h
- preparation of oral examination (part of the examination): 30 h

total: 180 h

Recommendation
module Advanced Fluid Mechanics (bauIM2P9)

Literature
Tropea, C. et.al., 2007, Springer Handbook of Experimental Fluid Mechanics, Springer Verlag Berlin
Module: Freshwater Ecology (bauiM2S41-SW8) [M-BGU-104922]

Responsible: PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2019)
- Subject-Specific Supplements (Usage from 4/1/2019)
- Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2019)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

- **T-BGU-109956** Applied Ecology and Water Quality 3 CR Fuchs, Hilgert
- **T-BGU-109957** Field Training Water Quality 3 CR Fuchs, Hilgert

Competence Certificate
- 'Teilleistung' T-BGU-109956 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-109957 with examination of other type according to § 4 Par. 2 No. 3

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Students get familiar with the basic principles of water ecology in surface waters. They are able to explain interactions between abiotic control factors (flow, chemistry, structure) and their relevance for the ecological status of standing waters and streams and to evaluate them critically. They become acquainted with field and laboratory techniques to establish water quality. With the help of these methods, they evaluate data-quality of information collected in the field regarding chemical, biological and structural water quality and determine the level of uncertainty intrinsic to the data-collection methods. Using case studies, students are able to convey and evaluate positive results as well as restrictions from water restoration processes.

Content
As part of the module, water ecology principles, their practical significance and implementation of restoring measures are presented. The following topics are covered:

- pollutants loads discharged into water bodies: discharge points, pollutants, sediment problems
- sampling methods
- oxygen content
- methods for the assessment of water quality and water general status
- practical exercises to measure water quality and condition in the field

Students get acquainted with practical examples of water protection and water remediation measures and they interpret and discuss them as part of an individual assignment. For this purpose, they implement their own framework, based on visible requirements and achievable targets.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
The number of participants in the courses is limited to 12 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students’ studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geocology and further study programs. The attendance at the first meeting is mandatory. In case of absence the place will be assigned to a person on the waiting list.
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Applied Ecology and Water Quality lecture/seminar: 30 h
- Field Training Water Quality (block): 30 h

independent study:

- preparation of the seminar paper with presentation (partial examination): 60 h
- preparation of the report on Field Training Water Quality (partial examination): 60 h

total: 180 h

Recommendation
none

Literature
Jürgen Schwörbel, Methoden der Hydrobiologie, UTB für Wissenschaft 1999
kursbegleitende Materialien
Module: River Basin Modeling (bauIM2S42-SW9) [M-BGU-103373]

Responsible: PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Water and Environment (Compulsory Elective Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 2 terms

Language: English

Level: 4

Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111061</td>
<td>Mass Fluxes in River Basins</td>
<td>3 CR</td>
<td>Fuchs</td>
<td></td>
</tr>
<tr>
<td>T-BGU-106603</td>
<td>River Basin Modeling</td>
<td>3 CR</td>
<td>Fuchs</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-111061 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-106603 with examination of other type according to § 4 Par. 2 No. 3

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to explain the basic relationships between water-driven material cycles in river basins and their budget in aquatic ecosystems. They are able to analyze the impact of anthropogenic activities on water condition and quality. Students gain knowledge regarding transport pathways of substances and biochemical and physical interactions in water bodies in order to formulate mathematical model approaches. Using simulation models, they are able to quantify substance emissions; to predict the impact from external influences on the water quality relevant processes and; to perform different scenario analysis. Students are capable of evaluating model results in terms of their plausibility and uncertainty.

Content
This module provides students with a broad-based understanding of the fundamentals of materials flows (N, P, pollutants) and their relevant transport pathways in river basins. Different modeling approaches for a quantitative description of the processes will be presented. Students receive a single-user version of the simulation tool MoRE (Modeling of Regionalized Emissions). They have to develop and implement their own model in small groups and interpret simulation results.

Module grade calculation
grade of the module is grade of the exam

Annotation
As from summer term 2021 the not graded accomplishment 'Mass Fluxes in River Basins' is examination prerequisite.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Mass Fluxes in River Basins lecture: 30 h
- Modelinng Mass Fluxes in River Basins exercise: 30 h

independent study:
- preparation and follow-up lectures Mass Fluxes in River Basins: 30 h
- working on exercises and final presentation Mass Fluxes in River Basins (not graded examination prerequisite): 30 h
- project work on River Basin Modeling (exam): 60 h

total: 180 h

Recommendation
modules Urban Water Infrastructure and Management [bauIM2P10-URBIM], Freshwater Ecology [bauIM2S41-SW8]

Literature
M 5.64 Module: Wastewater Treatment Technologies (bauiM2S43-SW10) [M-BGU-104917]

Responsible: PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2019)
- Subject-Specific Supplements (Usage from 4/1/2019)
- Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2019)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Information</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111282</td>
<td>Term Paper 'Wastewater Treatment Technologies'</td>
<td>3 CR</td>
<td>Fuchs</td>
<td></td>
</tr>
<tr>
<td>T-BGU-109948</td>
<td>Wastewater Treatment Technologies</td>
<td>3 CR</td>
<td>Fuchs</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-111282 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-109948 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
Students acquire knowledge about typical techniques and facilities in wastewater treatment at local and international level. They are able to perform a technical evaluation and describe dimensioning approaches taking into consideration legal boundary conditions. Students analyze, evaluate and optimize operation of plant technologies. They focus on energy-efficient plant designs considering the most relevant factors affecting the total costs. Students can analyze the situation in emerging and developing countries making a comparison with that in industrialized countries. Based on that, they are able to develop water-related management strategies.

Content
Students gain deep knowledge about design and operation of typical process technologies in municipal wastewater treatment in Germany and abroad. They analyze, evaluate the applied technologies and take decisions when new and more holistic oriented methods can be implemented. Different mechanical, biological and chemical treatment technologies are considered, whereby the treatment of waste water from households and industry as well as the treatment of rainwater is discussed. The visits of different facilities in Germany complete the course.

Module grade calculation
grade of the module is grade of the exam

Annotation
The number of participants in the course is limited to 30 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geocology and further study programs. The topics for the Term Paper are assigned at the beginning of the course.

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 30 h
- preparation of Term Paper 'Wastewater Treatment Technologies' (exam prerequisite): 60 h
- examination preparation: 30 h

total: 180 h

Recommendation
module 'Wasser and Environment' [bauiBFP4-WASSER]
Literature
ATV-DVWK (1997) Handbuch der Abwassertechnik: Mechanische Abwasserreinigung, Band 6, Verlag Ernst & Sohn, Berlin
Module: Introduction to Environmental Data Analysis and Statistical Learning (bauiM2S44-ENVDAT) [M-BGU-104880]

Responsible: Dr.-Ing. Uwe Ehret
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2019)
- Subject-Specific Supplements (Usage from 4/1/2019)
- Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2019)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

| T-BGU-109950 | Homework 'Introduction to Environmental Data Analysis and Statistical Learning' | 2 CR | Ehret |
| T-BGU-109949 | Introduction to Environmental Data Analysis and Statistical Learning | 4 CR | Ehret |

Competence Certificate
- 'Teilleistung' T-BGU-109950 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-109949 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can explain and apply methods for analysis and simulation of environmental data. Based on this they are capable of evaluating the suitability of available data, analysis and simulation methods for different tasks. The students are able to critically assess the results of analysis and simulation tools and to quantify and evaluate the related uncertainties.

Content
- explorative data analysis
- data storage / data bases
- probability theory (short summary)
- statistical tests (short summary)
- Bayesian methods
- information theory
- time series
- statistical learning / machine learning basics
- supervised learning
- unsupervised learning

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises: 20 h
- preparation of Homework 'Introduction to Environmental Data Analysis and Statistical Learning' (exam prerequisite): 60 h
- examination preparation: 40 h

total: 180 h
Recommendation

preliminary knowledge in statistics and Matlab programming skills, e.g. successful completion of Introduction to Matlab (WSEM-CC772)

Literature

5.66 Module: Fluid Mechanics of Turbulent Flows (bauiM2S45-NS4) [M-BGU-105361]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2020)
Subject-Specific Supplements (Usage from 4/1/2020)
Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2020)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-BGU-110841 Fluid Mechanics of Turbulent Flows 6 CR Uhlmann

Competence Certificate
- 'Teilleistung' T-BGU-110841 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Participants are able to describe the characteristics of turbulent flows, and to quantify their effect upon the transport rates of momentum, heat and mass. They are aware of the problems associated with computationally determining turbulent flow quantities. With this knowledge, they are able to weigh the pros and cons of the different modeling approaches; they are further able to choose an appropriate approach for a given application.

Content
The mathematical description of the physics of turbulence is successively developed. The module presents the phenomenology of turbulent flows, introduces the statistical description of turbulent flow processes, discusses the characteristics of free and wall-bounded shear flows, and presents an analysis of the turbulent energy cascade.

Module grade calculation
grade of the module is grade of the exam

Annotation
The module will be offered newly as from summer term 2020. It will replace the module Analysis of Turbulent Flows by parts.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
 • lecture, exercise: 60 h

independent study:
 • preparation and follow-up lectures, exercises: 60 h
 • examination preparation: 60 h

total: 180 h

Recommendation
Basic fluid mechanics (experience in working with the Navier-Stokes equations)
Mathematics (analysis – partial differential equations, Fourier series, vectors/tensors, matrices and eigenvalues; statistics)
Knowledge in programming with Matlab is recommended; otherwise it is strongly recommended to participate in the course 'Introduction to Matlab'.
5.67 Module: Modeling of Turbulent Flows - RANS and LES (bauiM2S46-NS5) [M-BGU-105362]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2020)
Subject-Specific Supplements (Usage from 4/1/2020)
Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-BGU-110842 Modeling of Turbulent Flows - RANS and LES 6 CR Uhlmann

Competence Certificate
- 'Teilleistung' T-BGU-110842 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Participants are able to weigh the pros and cons of the different modeling approaches; they are further able to choose an appropriate approach for a given application. Participants have the ability to critically evaluate the expected outcome of a range of turbulence models with respect to their predictive capabilities and the required computational effort.

Content
In this module covers the required mathematical tools and the most useful modeling approaches for fluids engineering problems. First the statistical approach to turbulence modeling, based upon Reynolds averaging (RANS) is presented, starting with the simplest algebraic model and ranging up to Reynolds stress transport models. Furthermore, an introduction to the concept of large-eddy simulation (LES) is given.

Module grade calculation
grade of the module is grade of the exam

Annotation
The module will be offered newly as from winter term 2020/21. It will replace the module Analysis of Turbulent Flows by parts.

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Modeling of Turbulent Flows - RANS and LES lecture, exercise: 60 h

independent study:

- preparation and follow-up lectures, exercises Modeling of Turbulent Flows - RANS and LES: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
Basic fluid mechanics (experience in working with the Navier-Stokes equations)
Mathematics (analysis – partial differential equations, Fourier series, vectors/tensors, matrices and eigenvalues; statistics)
Knowledge in programming with Matlab is recommended; otherwise it is strongly recommended to participate in the course 'Introduction to Matlab'.

Taking the module Fluid Mechanics of Turbulent Flows [bauiM2S45] preliminarily is strongly recommended.
Module: Interaction Flow - Building Structure (bauiM2S47-SM2) [M-BGU-105503]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 10/1/2020)
- Subject-Specific Supplements (Usage from 10/1/2020)
- Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 10/1/2020)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-110404</td>
<td>Interaction Flow - Hydraulic Structures</td>
<td>3 CR</td>
<td>Gebhardt</td>
<td></td>
</tr>
<tr>
<td>T-BGU-111060</td>
<td>Building and Environmental Aerodynamics</td>
<td>3 CR</td>
<td>Gromke</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-110404 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-111060 with oral examination according to § 4 Par. 2 No. 2

Prerequisites
The module must not be selected together with the modules Interaction Flow - Building Structure [bauiM2S16-SM2] and Hydraulic Structures [bauiM2S36-WB9].

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-BGU-103389 - Hydraulic Structures must not have been started.

Competence Goal
The students have the competence to analyse and calculate steady and unsteady flow loading on hydro-engineering and aerodynamic structures as well as natural structures. They characterize flow induced vibrations and can categorize and pre-estimate them. With typical applications the connection between theory and practice is given.

Content
The particularities of gates (lock gates, weir gates, submerged gate leaves) in hydraulic steel engineering are presented, their construction and calculation of their loading will be discussed.

The course Building- and Environmental Aerodynamics gives an introduction to the natural wind and its interaction with the built and natural environment. In the focus are wind load on buildings and wind induced vibrations as well as flow processes in the natural environment regarding natural wind shelter, fresh air ventilation to urban areas and wind comfort.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Interaction Flow - Hydraulic Structure lecture/exercise: 30 h
- Building and Environmental Aerodynamics lecture, exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Interaction Flow - Hydraulic Structure: 30 h
- examination preparation Interaction Flow - Hydraulic Structure (partial exam): 30 h
- preparation and follow-up lectures, exercises Building and Environmental Aerodynamics: 30 h
- examination preparation Building and Environmental Aerodynamics (partial exam): 30 h

total: 180 h
Recommendation

course Hydromechanics (6200304),
modules Advanced Fluid Mechanics [bauiM2P9-ADVFM], Technical Hydraulics [bauiM2S17-SM3]

Literature

Schmaußer, G., Nölke, H., Herz, E., 2000, Stahlwasserbauten - Kommentar zur DIN 19704, Ernst und Sohn Verlag, Berlin
Module: Integrated Design Project in Water Resources Management (bauiM2S48-HY9) [M-BGU-105637]

Responsible: Dr.-Ing. Uwe Ehret
Dr.-Ing. Frank Seidel

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2021)
- Subject-Specific Supplements (Usage from 4/1/2021)
- Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2021)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

|--------------|---|------|--------------|

Competence Certificate
- 'Teilleistung' T-BGU-111275 with written examination of other type according to § 4 Par. 2 No. 3

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are able to independently undergo the basic steps of planning and design in water resources management. They can identify engineering problems and apply the respective design approaches.

Students are able to work in a self-organized and reflexive manner. They are able to use and link their knowledge logically and have organizational skills in the areas of teamwork and presentation.

Content
In this module, students will work in teams to independently plan and design a flood protection measure for a small catchment. This comprises:

- identifying the legally required flood protection level
- establishing and comparing possible flood protection strategies
- setting up a hydrological model for the project catchment
- establishing hydrological design values based on design storms applied to the hydrological model, and designing flood values from extreme value statistics
- designing the outlet works and the flood release system of a flood retention basin based on the hydrological flood values with a special focus in capacity and energy dissipation.

In the lectures, the following topics required to successfully accomplish the design project will be covered:

- basic introduction to Water Resources Management
- basic planning methodology in water management projects
- basic hydrological modeling
- introduction to extreme-value statistics and design storms
- introduction to the related design standards and legal requirements (DIN 19700 and others)
- introduction to the design of hydraulic structures with a special focus on flood retention basins
- principals of Computer Aided Design (AutoCAD)
- background on operation and maintenance of flood retention basins
- practical example: excursion to a build flood retention basin

Module grade calculation
grade of the module is grade of the exam

Annotation
newly offered as from summer term 2021
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises: 30 h
- preparation of the study project and the report (examination): 120 h

total: 180 h

Recommendation
basic knowledge in hydrology, hydrological modeling, hydromechanics, hydraulic engineering
Matlab skills (for hydrological modeling), e.g. successful completion of Introduction to Matlab (WSE-CC772)
5.70 Module: River Processes (bauiM2S49-WB9) [M-BGU-105927]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Water and Environment (Compulsory Elective Modules) (Usage from 4/1/2022)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Competence Certificate
- 'Teilleistung' T-BGU-111930 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
This module must not be selected together with the module Flow and Sediment Dynamics in Rivers [bauiM2S35-WB8] not offered anymore.

Competence Goal
The module provides students with theoretical and practical knowledge of landscape and river processes, related to hydromorphodynamics and transported phases. The students will be able to transfer immature scientific knowledge into engineering praxis.

After successfully completing the course on Landscape and River Morphology, the student will be able to:
- describe the main morphology processes happening at the landscape and river scale,
- describe and identify the governing processes of singularities in the river networks such as confluences, bifurcations, bends, among others,
- identify possible implications of climate change in morphological processes of the river basin,
- identify the main hydromorphodynamic processes relevant to river ecology,
- transfer immature knowledge from scientific literature into engineering praxis.

After successfully completing the course on Transport Processes in Rivers, the student will be able to:
- describe the engineering and ecological implications of different types of moving elements (debris) in rivers,
- identify relevant sources and sinks of debris transported by rivers,
- quantify transport processes relative to river debris,
- plan monitoring campaigns based on state-of-the-art techniques.

Transfer scientific literature in river debris into practical applications.

Content
The course Landscape and River Morphology contains the following topics:
- morphology processes at the landscape scale
- morphology processes at the river scale
- intersection of hydromorphodynamic processes with engineering praxis
- safety and stability of river networks
- fluvial ecomorphology

The course Transport Processes in Rivers studies the sources, transport and transformations, and sinks of different types of elements:
- sediment transport (bed and suspended load)
- woody and vegetation debris
- plastic and urban (cars and urban furniture) debris
- bubbles and gas transfer
- contaminant plumes

Module grade calculation
grade of the module is grade of the exam
Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Landscape and River Morphology lecture/exercise: 30 h
- Transport Processes in Rivers lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Landscape and River Morphology: 10 h
- preparation of the seminar paper Landscape and River Morphology: 40 h
- preparation and follow-up lecture/exercises Transport Processes in Rivers: 10 h
- preparation of the seminar paper Transport Processes in Rivers: 40 h
- preparation of colloquium: 20 h

total: 180 h

Recommendation
basic knowledge in hydromechanics and hydraulic engineering
Module: Urban and Regional Planning (bauiM3P1-PLSTAREG) [M-BGU-100007]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Modules)
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Modules)
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

| T-BGU-100050 | Urban and Regional Planning | 6 CR | Soylu, Wilske |

Competence Certificate

- 'Teilleistung' T-BGU-100050 with oral examination according to § 4 Par. 2 No. 2

Details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The aim is to provide an overview of important tasks for spatial planning, of the legal principles, methods and strategies for solving spatial problems on urban and regional level. The students shall be able to develop planning strategies, particularly in the field of planning on a supra-local level.

Content

In the lectures basic goals and tasks of planning of different levels, procedures and instruments, the relationship between governmental and private planning are taught. The scientific contexts are developed systematically to strengthen the various methodological approaches to understand and evaluate them. Particular attention will be paid inter alia to changing conditions, such as demographic and economic developments.

Module grade calculation

Grade of the module is grade of the exam

Annotation

none

Workload

Contact hours (1 HpW = 1 h x 15 weeks):

- Urban Planning lectures/exercises: 30 h
- Regional Planning lectures: 30 h

Independent study:

- preparation and follow-up Urban Planning lectures/exercises: 30 h
- preparation and follow-up Regional Planning lectures: 30 h
- examination preparation: 60 h

Total: 180 h

Recommendation

Module Mobility and Infrastructure [bauiBFP5-MOBIN]

Literature

List of literature to module
5.72 Module: Models and Methods in Traffic Engineering and Transportation Planning (bauiM3P2-VERMODELL) [M-BGU-100008]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Modules)
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Modules)
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100012 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
see German version

Content
Methods and models in transport planning as well as the relevant tools and methods for the traffic engineer. Transport Planning:
- four-Step-Algorithm
- aggregate versus individual models
- choice modeling

Traffic Engineering:
- measuring traffic flow data
- description of traffic conditions / fundamental diagram
- capacity of roads and intersections with and without traffic signals

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Methods and Models in Transportation Planning lectures/exercises: 30 h
- Traffic Engineering lectures/exercises: 30 h
- independent study:
 - preparation and follow-up Methods and Models in Transportation Planning lectures/exercises: 30 h
 - preparation and follow-up Traffic Engineering lectures/exercises: 30 h
 - examination preparation: 60 h

total: 180 h

Recommendation
none

Literature
lecture notes with additional references / exercises
Module: Infrastructure Management (bauIM3P3-STRINFRA) [M-BGU-100009]

5.73 Module: Infrastructure Management (bauIM3P3-STRINFRA) [M-BGU-100009]

Responsible: Prof. Dr.-Ing. Ralf Roos
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Modules)
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Modules)
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-106300 | Infrastructure Management | 6 CR | Roos |

Competence Certificate
- "Teilleistung" T-BGU-106300 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the respective "Teilleistung"

Prerequisites
none

Competence Goal
The graduates are able to apply and develop respectively methods and techniques for different tasks related to the life cycle of a road (design, construction, operation and maintenance) and to examine these with regard to their technical suitability and economic feasibility. Further, they have the competence to be able to apply these methods to other problems and in different fields and modify them respectively.

Content
The module addresses further topics about design and construction of roads such as aspects of safety, junctions, construction materials, way of construction and drainage. In the phase of operation of a road after release for traffic logistical and technical aspects of the operation service (road control, snow and ice control, green belt care etc.) as well as the maintenance of roads (status recognition and evaluation, surface and structure properties, pavement management a.o.) come to the fore which are important for smooth and safe traffic flow. These are discussed in the classes fundamentally.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Design and Construction of Highways lectures: 30 h
- Operation and Maintenance of Highways lectures: 30 h

independent study:
- preparation and follow-up Design and Construction of Highways lectures: 30 h
- preparation and follow-up Operation and Maintenance of Highways lectures: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
none
Module: Track Guided Transport Systems - Technical Design and Components (bauIM3P4-EBTECHNIK) [M-BGU-100010]

Responsible: Jan Tzschaschel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules) (Usage from 4/1/2020)
- Subject-Specific Supplements (Usage from 4/1/2020)
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules) (Usage from 4/1/2020)

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 4
Version 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100052</td>
<td>Track Guided Transport Systems - Technical Design and Components</td>
<td>6 CR</td>
<td></td>
<td>Tzschaschel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100052 with written examination according to § 4 Par. 2 No. 1

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students are enabled to analyse the field of guided transport systems in its thematic complexity, to recognise the technical context and develop solutions to problems.

Content
- law, organisation and development of railways
- basics of dynamics of train movements
- introduction to planning and design of train stations and railway line layout
- introduction to the layout and dimensioning of the superstructure
- future developments of railway traffic

Module grade calculation
grade of the module is grade of the exam

Annotation
IMPORTANT:
The module will be offered once again as from summer term 2020.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lectures/exercises: 60 h

independent study:
- preparation and follow-up lectures/exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
none

Literature
Zilch, Diederichs, Katzenbach: Handbuch f. Bauingenieure, Springer-Verlag
Pachl, J.; Systemtechnik des Schienenverkehrs, Springer Vieweg
5.75 Module: Laws and Proceedings Concerning Traffic and Roads (bauiM3P5-VERFRECHT) [M-BGU-100011]

Responsible: Prof. Dr.-Ing. Ralf Roos

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Modules)
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Modules)
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

Competence Certificate

- 'Teilleistung' T-BGU-100050 with written examination according to § 4 Par. 2 No. 1

Details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The graduates know the legal framework concerning construction and operating of roads and can justify and question decisions. Furthermore, they understand methods concerning environmental impact analysis of infrastructure, they can technically argue and classify evaluations of variants. In addition, they are able to apply assessment and evaluation techniques for the planning of infrastructure projects, to modify them with respect to specific applications and to analyse their results.

Content

Constitutional framework, environmental impact of roads, changing topics concerning mainly procedures in highway engineering Methodologies and application of standardized assessment and decision techniques (Cost-Benefit-Analyses, Value Benefit Analysis etc.) in transport planning

Module grade calculation

Grade of the module is grade of the exam

Annotation

none

Workload

Contact hours (1 HpW = 1 h x 15 weeks):

- Laws concerning Traffic and Roads lectures: 30 h
- Environmental Impact Assessment lectures: 15 h
- Assessment and Evaluation Techniques lectures: 15 h

Independent study:

- preparation and follow-up Laws concerning Traffic and Roads lectures: 30 h
- preparation and follow-up Environmental Impact Assessment lectures: 15 h
- preparation and follow-up Assessment and Evaluation Techniques lectures: 15 h
- examination preparation: 60 h

Total: 180 h

Recommendation

none
Module: Urban Renewal (bauiM3S01-PLSTUMB) [M-BGU-100013]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

Credits 6
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language German
Level 4
Version 2

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-108441</td>
<td>History of Urban Planning</td>
<td>3 CR</td>
<td>Vogt</td>
</tr>
<tr>
<td>T-BGU-108442</td>
<td>Urban Management</td>
<td>3 CR</td>
<td>Karmann-Woessner</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-108441 with oral written according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-108442 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The aim is to convey the principles and methods of urban renewal. In the module adaptation strategies are taught, by which cities and city regions react to changing conditions. These changes -such as climate change, demographics or changing economic practices- are encountered by urban concepts city-wide, on the level of city quarters or on the building level. In addition to the urban redevelopment in Germany selected references from Europe are examined.

Content
Based on the core module "Urban and Regional Planning" this lecture is focused on adaptation strategies of cities and urban regions. In addition to a classification in the current discussions on urban redevelopment basic methods and tools are taught. The students of the module Urban Renewal shall be able to elaborate strategies of urban renewal and redevelopment. The basic methodological framework is the discussion of projects as examples for good practice. The module will be supplemented by courses such as "History of Urban Planning and the Built Environment" to consider the historical development and cultural heritage. In addition, in the course "Building Theory" urban qualities and implementation on the building level are taught.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Urban Management lectures/exercises: 30 h
- Urban Planning I: History of Urban Planning and the Built Environment lectures: 30 h

independent study:
- preparation and follow-up Urban Management lectures/exercises: 30 h
- examination preparation Urban Management: 30 h
- preparation and follow-up Urban Planning I: History of Urban Planning and the Built Environment lectures: 30 h
- examination preparation History of Urban Planning: 30 h

total: 180 h

Recommendation
none

Literature
list of literature to module
5.77 Module: Space and Infrastructure (bauIM3S02-PLRAUMINF) [M-BGU-100014]

Responsible: PD Dr.-Ing. Martin Kagerbauer

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111278</td>
<td>Exercises Space and Infrastructure</td>
<td>1 CR</td>
</tr>
<tr>
<td>T-BGU-100056</td>
<td>Space and Infrastructure</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-111278 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-100056 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

see German version

Content

see German version

Module grade calculation

grade of the module is grade of the exam

Annotation

As from summer term 2021 the Exercises Space and Infrastructure, T-BGU-111278, is examination prerequisite.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Logistics, Supply and Disposal lecture/exercises: 30 h
- Fundamentals of Geographic Information Systems for Modelling and Planning lectures/exercises: 60 h

independent study:

- preparation and follow-up Logistics, Supply and Disposal lectures: 10 h
- preparation and follow-up Fundamentals of Geographic Information Systems for Modelling and Planning lectures/exercises: 10 h
- preparation of the Exercises Space and Infrastructure (not graded examination prerequisite): 25 h
- examination preparation: 45 h

Total: 180 h

Recommendation

none

Literature

list of literature to module
5.78 Module: Traffic Management und Simulation Methods (bauIM3S03-VERMANAGE) [M-BGU-100015]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

Credits 6
Grading scale Grade to a tenth
Recurrence Each term
Duration 1 term
Language German
Level 4
Version 1

Mandatory
T-BGU-100008 Traffic Management und Simulation Methods 6 CR Vortisch

Competence Certificate
- 'Teilleistung' T-BGU-100008 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Acquisition of the specific and advanced knowledge and the relevant methodologies in the field of traffic engineering. Basic considerations in the development and the application of simulation models in transport planning and traffic engineering.

Content
In excess of the basic module "Model approaches and methods in transportation" more advanced methods of traffic engineering will be dealt with (advanced signalisation, control of routes and networks). Furthermore methods for the development of simulation models as well as their application will be in the focus (application of professional software tools for transport planning and traffic engineering). Another issue are transport telematics and intelligent transportation system.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Traffic Management and Transport Telematics lectures/exercises: 30 h
- Traffic Flow Simulation lectures/exercises: 30 h

independent study:

- preparation and follow-up Traffic Management and Transport Telematics lectures/exercises: 30 h
- preparation and follow-up Traffic Flow Simulation lectures/exercises: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
none

Literature
lecture notes
guidelines ('Handbuch zur Bemessung von Straßen', 'Richtlinien für Lichtsignalanlagen'),
software documentations
Module: Planning of Transportation Systems (bauiM3S04-VERPLAN) [M-BGU-100016]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100013 | Planning of Transportation Systems | 6 CR | Vortisch |

Competence Certificate
- 'Teilleistung' T-BGU-100013 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students know all common means of transport and their properties. They can assess advantages and disadvantages of the means of transport from the perspective of users, operators and the environment, and they can make decisions about the system adapted to the situation. They understand the systemic interrelation of means of transport, infrastructure and mobility behaviour. The students know the methods of transportation planning common in practice and can these critically evaluate and develop further.

Content
- means of transport and their properties: capacity, velocity and energy consumption;
- environmental impacts: pollutant emission, noise and traffic safety;
- origin and evolution of traffic demand;
- examples of transport systems: bicycle traffic as system, planning procedures in public transport;
- boundary conditions of strategic planning: target systems, civic participation, policy influence;
- application of models;
- activity development;
- impact investigation and evaluation;
- examples: federal road plan, international master plans;
- transport development plans

Module grade calculation
grade of the module is grade of the exam

Annotation
As from summer term 2020 the learning control is a written exam.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Characteristics of Transportation Systems lectures: 30 h
- Strategic Transport Planning lectures: 30 h

independent study:
- preparation and follow-up Characteristics of Transportation Systems lectures: 30 h
- preparation and follow-up Strategic Transport Planning lectures: 30 h
- examination preparation: 60 h

Total: 180 h

Recommendation
course Transportation (6200406)
Literature

lecture notes and materials are available for downloading
M 5.80 Module: Highway Design (bauiM3S05-STRENTW) [M-BGU-100017]

Responsible: Dr.-Ing. Matthias Zimmermann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109917</td>
<td>Study Project Design of a Rural Road</td>
<td>2 CR</td>
<td>Roos, Zimmermann</td>
</tr>
<tr>
<td>T-BGU-100057</td>
<td>Highway Design</td>
<td>4 CR</td>
<td>Roos, Zimmermann</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-109917 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-100057 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The graduates can apply methods as well as manual and computer aided procedures for the design of a road in position elevation and cross section and design new roads. Furthermore, they are able to develop and evaluate variants of new roads considering traffic, topographic, ecologic and economic requirements as well as to assess road designs in compliance with the technical regulations.

Content
In this module the procedure of finding the route of a bypass road will be discussed and applied to a specific planning example. After defining the boundary conditions for the draft of this bypass road design solutions are developed in the map, in the gradient diagram and in the cross-section manually by small teams. The results are discussed. Here also, tests are made whether the standards are satisfied and related to requirements of the spatial route planning. In parallel to this manual route planning of the road, the procedure of a computer aided road design is addressed in theory as well as practically at basic design examples. The exercises are conducted by use of the both most popular design codes.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- IT-based Road Design lectures/exercises: 30 h
- Highway Design Project Study lectures/exercises: 30 h

independent study:

- preparation and follow-up IT-based Road Design lectures/exercises: 30 h
- preparation and follow-up Highway Design Project Study lectures/exercises: 30 h
- attestation of study project (examination prerequisite): 20 h
- examination preparation: 40 h

total: 180 h

Recommendation
preliminary attendance of the compulsory module Infrastructure Management [bauiM3P3-STRINFRA]
5.81 Module: Road Construction (bauIM3S06-STRBAUT) [M-BGU-100006]

Responsible: Prof. Dr.-Ing. Ralf Roos
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100058 | Road Construction | 6 CR | Roos |

Competence Certificate
- 'Teilleistung' T-BGU-100058 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The graduates are able to dimension and to test roadway constructions build of asphalt and concrete empirically and by
calculation and to assess the impact of internal and external influencing factors on roadway constructions. Furthermore, they are
able to explain mechanisms of failure, to question and to evaluate failures as well as to test material parameters by experimental
techniques in the lab.

Content
In this module material models, influencing factors on roadway constructions as well as basics and parameters for an empirical
and calculatory dimensioning of transportation routes are addressed deeply. Furthermore, deficiencies and failures of roadway
constructions are presented and failure mechanisms are explained. In the practical training experiments on the determination of
material parameters of unconsolidated materials, bitumen and asphalt are conducted, analysed and evaluated as well as the
application of dimensioning methods are examined at real-world examples.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Practical Laboratory Training in Road Construction lectures/exercises: 30 h
- Pavement Structural Design and Failure Analysis lectures: 30 h

independent study:

- preparation and follow-up Practical Laboratory Training in Road Construction lectures/exercises: 30 h
- preparation and follow-up Pavement Structural Design and Failure Analysis lectures: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
preliminary attendance of the compulsory module Infrastructure Management [mobiM301-STRINFRA]
Module: Project Integrated Planning (bauiM3S09-PROJEKTIP) [M-BGU-100018]

5.82 Module: Project Integrated Planning (bauiM3S09-PROJEKTIP) [M-BGU-100018]

- **Responsible:** Prof. Dr.-Ing. Ralf Roos
- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
- **Part of:**
 - Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
 - Subject-Specific Supplements
 - Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109916</td>
<td>Group Exercise Project Integrated Planning</td>
<td>5</td>
<td>Roos</td>
</tr>
<tr>
<td>T-BGU-100061</td>
<td>Project Integrated Planning</td>
<td>1</td>
<td>Roos</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-109916 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-100061 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

The graduates are able to analyze the planning requirements of the different subject areas in the field mobility and infrastructure and to apply them to a specific example. They identify the weak points, develop realizable solutions and discuss them in the framework of a multi-disciplinary weighing process. Furthermore, they can work self-organized and have organisational and didactic competences with respect to team work and presentation.

Content

A typical practical task in the field of spatial and infrastructure planning has to be elaborated (e.g. ideas contest in town planning). The students have to take charge of certain planning tasks from the fields town planning, transport studies, highway engineering and track guided transport systems and develop different solution concepts based on a conflict and deficiency analysis. In order to obtain an integrated planning concept the requirements of the involved subject areas have to be considered. Subsequent to a weighing process, they select well-founded a acceptable and sustainable concept which they develop further and present in 3 phases to a realizable solution on different levels of detail.

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- on-site meeting, technical group meetings, presentations: 15 h

independent study:

- preparation and follow-up: 15 h
- team exercise (examination prerequisite, part per person): 135 h
- examination preparation and examination: 15 h

total: 180 h

Recommendation

preliminary attendance of at least 2 compulsory modules in the study focus Mobility and Infrastructure
Module: Intermodality in Freight, Long-Distance and Air Transport (bauiM3S11-VERINTER) [M-BGU-100020]

Responsible: Bastian Chlond
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106611</td>
<td>Freight Transport</td>
<td>3 CR</td>
<td>Chlond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-106301</td>
<td>Long-Distance and Air Traffic</td>
<td>3 CR</td>
<td>Chlond</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-106611 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-106301 with written examination according to § 4 Par. 2 No. 1
details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Knowledges about the characteristics of freight transportation, long distance travel and air travel against the background of the globalization and and EU-integration Knowledge about the challenges and the design and of intermodal transport services.

Content

- relevant factors for the demand in freight transport
- methods for demand forecasts and planning in freight transport
- measures for influencing the demand in freight transport as well as their efficiency
- particularities of the airline industry in a global market shown in case studies
- organisation of the airline industry
- particularities of Long Distance Travel
- methodology of the Federal Transport Master Plan
- evolution of Long Distance Transport Systems

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Freight Transport lectures/exercises: 30 h
- Long-distance and Air Traffic lectures: 30 h

independent study:

- preparation and follow-up Freight Transport lectures/exercises: 30 h
- examination preparation Freight Transport (partial exam): 30 h
- preparation and follow-up Long-distance and Air Traffic lectures: 30 h
- examination preparation Long-distance and Air Traffic (partial exam): 30 h

total: 180 h

Recommendation

none
Literature
lecture accompanying documents
Module: Road Safety (bauIM3S12-STRVSICH) [M-BGU-100021]

Responsible
Dr.-Ing. Matthias Zimmermann

Organisation
KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

Credits
6

Grading scale
Grade to a tenth

Recurrence
Each winter term

Duration
1 term

Language
German

Level
4

Version
3

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109915</td>
<td>Seminar Paper Road Safety</td>
<td>3 CR</td>
<td></td>
<td></td>
<td></td>
<td>Zimmermann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-100062</td>
<td>Road Safety</td>
<td>3 CR</td>
<td></td>
<td></td>
<td></td>
<td>Zimmermann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-109912 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-100062 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The graduates are able to apply methods and techniques for the improvement of road safety, to evaluate the safety of road networks, road sections and junctions, to identify accident black spots, to analyse accidents and their causes as well as to develop measures to improve road safety and evaluate them in their effect. Furthermore, they are able to self-organized and have organisational and didactic competences available related to team work and presentations.

Content
In this course the theoretical basics of road safety are repeated and fundamental improvements are discussed. During the following seminar in highway engineering changing regional accident black spots are analysed and improvements for the road authorities are worked out and will be presented.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Safety Management in Highway Engineering lectures/exercises: 30 h
- Seminar in Highway Engineering: 30 h

independent study:
- preparation and follow-up Safety Management in Highway Engineering lectures/exercises: 30 h
- preparation of seminar paper (examination prerequisite): 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
none
5.85 Module: Special Topics in Highway Engineering (bauIM3S13-STRSPEZ) [M-BGU-100022]

Responsible: Prof. Dr.-Ing. Ralf Roos

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106734</td>
<td>Special Topics in Highway Engineering</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-106734 with oral examination according to § 4 Par. 2 No. 2

Details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The graduates are able to apply methods and techniques for specific aspects in the life cycle of a road, to modify them for the application case and to analyse the obtained knowledge. They are able to investigate the organisation and implementation of the operation and maintenance of a road, for instance, to reveal the weak points and to develop improvement possibilities.

Content

In this module the duties of the management of existing roads are acquired and the technical and commercial control from the point of view of the road authorities are explained. Further, different methods for the simulation, analysis and evaluation of additional problems and special aspects in highway engineering are presented and discussed by means of varying topics of design, construction, operation and maintenance of roads (e.g. statistical analysis of large data sets, simulation of traffic flow under particular boundary conditions, construction material analysis in lab experiments, innovative contractual forms for construction and operation of roads, econ. privatization).

Module grade calculation

Grade of the module is grade of the exam

Annotation

none

Workload

Contact hours (1 HpW = 1 h x 15 weeks):

- Technical and Economic Management Tools in Highway Engineering lectures: 30 h
- Simulations and Analysis Methods in Highway Engineering lectures: 15 h
- Special Topics in Highway Engineering lectures: 15 h

Independent study:

- preparation and follow-up Technical and Economic Management Tools in Highway Engineering lectures: 30 h
- preparation and follow-up Simulations and Analysis Methods in Highway Engineering lectures: 15 h
- preparation and follow-up Special Topics in Highway Engineering lectures: 15 h
- examination preparation: 60 h

Total: 180 h

Recommendation

Preliminary attendance of the compulsory module Infrastructure Management [bauIM3P3-STRINFRA]
Module: City Transport Facilities (bauIM3S17-STRIVA) [M-BGU-100026]

Responsible: Prof. Dr.-Ing. Ralf Roos

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Modules) (Usage from 10/1/2018)
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Modules) (Usage from 10/1/2018)
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 2

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-109912</th>
<th>Exercises and Student Research Project City Transport Facilities</th>
<th>2 CR</th>
<th>Roos</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100083</td>
<td>City Transport Facilities</td>
<td>4 CR</td>
<td>Roos</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-109912 with not graded accomplishment according to § 4 Par. 3 as examination prerequisite
- 'Teilleistung' T-BGU-100083 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The graduates are able to plan and design city transport facilities related to car, bicycle, pedestrian and public traffic as well as to test, evaluate and optimize existing infrastructure. Further, they are able to assess the different usage requirements of different types of transportation and to consider them appropriately in design planning.

Content
Manifold requirements are put on city transport facilities in contrast to overland roads: usage from transit to access traffic, usage for stationary traffic, weak road users such as bicyclist and pedestrians, the demand of moving traffic, for stay and recreation activities up to the designing of the transport facilities considering the cityscape. Contemporarily, a variety of carriers of traffic are found within urban areas which have to be taken into consideration for designing roads and junctions as well as the network of transportation routes. All aspects are covered, discussed and their handling is practised at practically relevant case studies within this module.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lectures/exercises: 45 h

independent study:

- preparation and follow-up lectures/exercises: 30 h
- preparation of exercises and student research project (examination prerequisite): 70 h
- examination preparation: 40 h

total: 185 h

Recommendation
none
Module: Track Guided Transport Systems - Operation and Capacity (bauIM3S18-EBBETRKAP) [M-BGU-100581]

Responsible: Jan Tzschaschel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory
T-BGU-101002 Track Guided Transport Systems - Operation and Capacity 6 CR Tzschaschel

Competence Certificate
- 'Teilleistung' T-BGU-101002 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The Students can analyse, structure and describe formally problems in the field of operation of track guided transport systems. They are able to process methodically questions of security and capacity of railway tracks and to propose solutions.

Content
- operation and signal systems
- safety and signalbox technologies
- time table compilation
- performance and capacity of railway lines
- proof of safety
- operation and dimensioning of marshalling yards

Module grade calculation
grade of the module is grade of the exam

Annotation
as from summer term 2022 written examination

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Operation Track Guided Systems lectures: 30 h
- Operation Systems and Track Guided Infrastructure Capacity lectures: 30 h
independent study:
- preparation and follow-up Operation Track Guided Systems lectures: 30 h
- preparation and follow-up Operation Systems and Track Guided Infrastructure Capacity lectures: 30 h
- examination preparation: 60 h
total: 180 h

Recommendation
none

Literature
Fiedler, Grundlagen der Bahntechnik, Werner-Verlag, Düsseldorf
Hausmann, Enders, Grundlagen des Bahnbetriebs, Bahn-Fachverlag, Heidelberg
Pachl, Systemtechnik des Schienenverkehrs, Teubner-Verlag, Stuttgart
Module: Analysis and Evolution of Mobility (bauiM3S20-VERANAMOB) [M-BGU-100583]

Responsible: PD Dr.-Ing. Martin Kagerbauer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101004</td>
<td>6 CR</td>
<td>Kagerbauer</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-101004 with oral examination according to § 4 Par. 2 No. 2

Prerequisites
none

Competence Goal
The students master the methods to capture and to analyse the mobility behaviour of the people and recognize trends in the behaviour. They know up to date mobility offers and are able to evaluate these from the point of view of users and operators.

Content
- capturing mobility: measurements and surveys, data preparation
- analysis: statistical methods and software tools therefore (SAS, R), also practical exercises at PC
- new forms of mobility, e.g. sharing systems for cars and bicycles
- mobility services: rideshare services, intermodal information systems etc.
- analysis of functionality, interrelations and backgrounds of these mobility forms

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Transportation Data Analysis lectures/exercises: 30 h
- Mobility Services and new Forms of Mobility lectures/exercises: 30 h

independent study:
- preparation and follow-up Transportation Data Analysis lectures/exercises: 30 h
- preparation and follow-up Mobility Services and new Forms of Mobility lectures/exercises: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
course Transportation (6200406)
Module: Special Issues of Public Transport (bauiM3S22-VERSPEZOEV) [M-BGU-103357]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Mobility and Infrastructure (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Mobility and Infrastructure (Compulsory Elective Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each term

Duration: 1 term

Language: German

Level: 4

Version: 3

Election notes
Two of the courses with the associated examinations are to be selected.

Electives (Selection: 2 items as well as 6 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101005</td>
<td>Tendering, Planning and Financing in Public Transport</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-100014</td>
<td>Seminar in Transportation</td>
<td>3 CR</td>
<td>Chlond, Vortisch</td>
</tr>
<tr>
<td>T-BGU-106608</td>
<td>Information Management for Public Mobility Services</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-111057</td>
<td>Sustainability in Mobility Systems</td>
<td>3 CR</td>
<td>Kagerbauer</td>
</tr>
</tbody>
</table>

Competence Certificate
Two learning controls have to be selected:
- 'Teilleistung' T-BGU-101005 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-100014 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-106608 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-111057 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
see German version

Content
see German version

Module grade calculation
grade of the module is CP weighted average of grades of the selected partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks), depending on selected courses:
- Tendering, Planning and Financing in Public Transport lectures: 30 h
- Seminar in Transportation: 30 h
- Information Management for public Mobility Services lectures/exercises: 30 h
- Sustainability in Mobility Systems lectures: 30 h

independent study, depending on selected courses:
- preparation and follow-up Tendering, Planning and Financing in Public Transport lectures: 30 h
- examination preparation Tendering, Planning and Financing in Public Transport (selectable partial exam): 30 h
- preparation of term paper and presentation (selectable partial exam): 60 h
- preparation and follow-up Information Management for public Mobility Services lectures/exercises: 30 h
- preparation accompanying exercises Information Management for public Mobility Services (selectable partial exam): 30 h
- preparation and follow-up Sustainability in Mobility Systems lectures: 30 h
- examination preparation Sustainability in Mobility Systems (selectable partial exam): 30 h

total: 180 h
Recommendation

course Transportation (6200406)
Module: Sustainability in Real Estate Management (bauM4P4-) [M-BGU-100112]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Modules)
- Subject-Specific Supplements
- Study Focus II / Technology and Management in Construction (Compulsory Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100149</td>
<td>Sustainability in Real Estate Management</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100149 with written examination according to § 4 Par. 2 No. 1
- details about the learning control see at the 'Teilleistung'

Prerequisites
- none

Competence Goal

The students can present the essential interrelationships within sustainable construction and operation and understand the importance of multi-criteria analyses. The students analyse current scientific publications in this field independently with the aim of arguing thematically and scientifically in society. They can explain the focus of international real estate sustainability certification systems, describe differences in their assessment methodology and highlight their advantages and disadvantages.

Furthermore, the students can apply selected assessment criteria of the systems presented. The students understand questions of economic and ecological assessment along the life cycle of buildings and can independently carry out life cycle analyses. They can interpret the results of life cycle analyses and to evaluate system limits and calculation parameters in published analyses.

Furthermore, the students know the process of award procedures in FM and can discuss these in connection with public procurement law. Furthermore, they can explain and benchmark the essential contents of outsourcing FM services and their effects. Furthermore, they understand the importance of information technology in facility management.

Content

- definition and history of the term sustainability
- study of current peer-reviewed papers
- economic, ecological, and socio-cultural significance of the built environment
- costs and environmental impacts of real estate
- national and international sustainability assessment procedures for real estate
- calculation methods for life cycle costs
- life cycle assessment for buildings
- external costs in building construction and their integration in life cycle costing
- outsourcing and procurement regulations in facility management
- data collection (CAFM) in facility management
- presentation of measurement criteria for SLA and KPI and digitalisation
- Balanced Scorecard

Module grade calculation

grade of the module is grade of the exam

Annotation
- none
Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Sustainability in Real Estate Management lecture/exercise: 30 h
- Life Cycle Management of Real Estate lecture: 15 h
- Facility and Real Estate Management II lecture: 15 h

independent study:

- preparation and follow-up lecture/exercises Sustainability in Real Estate Management: 30 h
- preparation and follow-up lectures Life Cycle Management of Real Estate: 15 h
- preparation and follow-up lectures Facility and Real Estate Management II: 15 h
- examination preparation: 60 h

total: 180 h

Recommendation

courses Facility und Real Estate Management I (6200414), Life Cycle Management (6200615)
5.91 Module: Project Management in Construction and Real Estate Industry (bauIM4P5-) [M-BGU-100338]

- **Responsible:** Prof. Dr.-Ing. Shervin Haghsheno
- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
- **Part of:**
 - Study Focus I / Technology and Management in Construction (Compulsory Modules)
 - Subject-Specific Supplements
 - Study Focus II / Technology and Management in Construction (Compulsory Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 4

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100622</td>
<td>Project Management in Construction and Real Estate Industry</td>
<td>5</td>
<td>Haghsheno</td>
</tr>
<tr>
<td>T-BGU-108011</td>
<td>Student Research Project 'Scheduling and Building Site Facilities'</td>
<td>1</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-108011 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100622 with examination of other type according to § 4 Par. 2 No. 3

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students have advanced knowledge in the field of project management in the application of construction and real estate management. The focus is particularly on the phases of project preparation (project set-up) and design. They are aware of the importance of comprehensive requirements planning and can apply methods for requirements planning and evaluate concerning completeness and plausibility. In addition, the students can explain procurement and project delivery methods and select and adapt them to the existing framework conditions of a project. They can also present the essential aspects of schedule, cost, quality, and risk management and adapt them to the project framework conditions. They can also explain approaches which can be used to shape project culture.

Content
Based on the basics of project management, selected topics in the field of project management in the application of construction and real estate management are deepened in this module.

The emphasis is placed on the following fields of action and competence:

- project preparation incl. determination of requirements,
- procurement models and award processes,
- project execution models incl. project organization and contract models,
- quality, schedule, and cost management,
- risk management,
- project culture.

Module grade calculation
grade of the module is grade of the exam

Annotation
The students work as teams within the framework of a case study. The results of the case study are documented in form of a report and presented by the students at the end of the module. The module follows the 'flipped classroom' approach.

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 30 h
- independent study:
 - preparation and follow-up lecture/exercises: 60 h
 - teamwork, preparation of the paper and presentations (examination): 60 h
 - preparation of student research project (not graded accomplishment): 30 h

total: 180 h
Recommendation
course 'Project Management' (6200106)

Literature
5.92 Module: Machinery and Process Engineering (bauiM4P6-) [M-BGU-100339]

Responsible:	Prof. Dr.-Ing. Sascha Gentes
Organisation:	KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:	Study Focus I / Technology and Management in Construction (Compulsory Modules)
	Subject-Specific Supplements
	Study Focus II / Technology and Management in Construction (Compulsory Modules)

Credits	6
Gradation scale	Grade to a tenth
Recurrence	Each winter term
Duration	1 term
Language	German
Level	4
Version	2

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100623</td>
<td>Machinery and Process Engineering</td>
<td>5 CR</td>
</tr>
<tr>
<td>T-BGU-108012</td>
<td>Student Research Project 'Excavation Pit Development and Shuttering Planning'</td>
<td>1 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-108012 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100623 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can name the basic principles and concepts of machine technology and are able to describe the built and function of construction machinery and equipment. They can appropriately name the equipment and select the suitable machines depending on their building tasks. They understand the BGL system (list of construction equipment) and are able to rank and classify machines and equipment as needed. They will realize optimization potentials using suitable process technology and equipment alternatives. Finally, they will be able to plan and size various construction machines and transport devices with respect to static and dynamic effects and impacts.

Content
This module provides machine technology basics to better understand a broad variety of construction equipment and machinery. Further, static and dynamic effects and impacts of construction equipment application will be discussed, various construction machines introduced, their respective applications compared, and basics for their dimensioning provided. Different construction machines and their variations will be presented with the help of the BGL system. In addition, the functions, variations, effectiveness, and applications for diverse construction and productions procedures used in processing technology, earthworks, underground engineering, and hydraulic engineering will be presented and discussed. The curriculum also includes the necessary technical basics for drive systems, power transmission components (mechanic and hydraulic), undercarriages, as well as steering controls, and safety facilities.

In addition to a building site visit for practical insight, a practical course on the institute's own test site will be offered to try out construction machinery. Finally, students need to develop two exercises within the scope of their seminar paper as part of this module.

Module grade calculation
grade of the module is grade of the exam

Annotation
none
Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Construction Equipment lecture: 30 h
- Process Engineering lecture: 30 h

independent study:

- preparation and follow-up lectures Construction Equipment: 20 h
- preparation and follow-up lectures Process Engineering: 20 h
- preparation of student research project: 30 h
- examination preparation: 50 h

total: 180 h

Recommendation

none

Literature

1) Baugeräteliste, aktuelle Fassung
Module: Production Planning and Control in Construction (bauIM4P7-) [M-BGU-105918]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Technology and Management in Construction (Compulsory Modules) (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111901</td>
<td>Production Planning and Control in Construction</td>
<td>5 CR</td>
<td>Haghsheno</td>
</tr>
<tr>
<td>T-BGU-108010</td>
<td>Student Research Project 'Cost Estimation in Structural Engineering and Earthworks'</td>
<td>1 CR</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-108010 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-111901 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites
The module must not be taken together with the module Economics and Management in Construction [bauIM4P3-] not offered anymore.

Competence Goal
The students can describe the essential technical, business, and organizational tasks of construction management from the order to acceptance and can analyze and evaluate the individual work steps. They can describe the fundamental processes of construction site planning and handling and assign suitable methods and tasks. Besides, they can design production systems for selected products from the construction industry and apply various techniques and methods for resource and logistics planning. Furthermore, the students can name the essential accident prevention regulations and can describe the active and passive protection measures as well as the organization of the labor protection. In addition, the students can develop approaches to solutions in the area of occupational safety on the basis of problem situations.

The students can explain the different methods of calculation and the structure of a calculation. They have the knowledge to create tenders and unit prices independently. Furthermore, students can apply current software for the calculation. Furthermore, the course clarifies, how to create, justify and calculate claims based on the VOB/B by using practical examples.

Students can explain the construction contract laws as well as the difference between BGB and VOB. Furthermore, students can explain the different types of procurement. The students are familiar with legal thinking regarding contract and employment law and can apply the basics to construction projects. Thereby, they can assess and evaluate the contents of a construction contract.

Content
The course site management presents the work of foreman, site manager, and project manager and contains significant aspects of management processes of the construction site. In addition to performance reporting, work costing and site management, the technical, legal and economic tasks of the site manager as well as communication and correspondence on the construction site will be highlighted. In addition, accident prevention regulations, active and passive protection measures as well as the organization of the labor protection during operation and on site are discussed.

The area of construction site planning and handling deals in more detail with various production systems and factors from the construction industry. Based on this, resource planning for the management of a construction site is dealt with in more detail. In addition to the resources of financial resources, machines and employees, logistics planning is also dealt with in more detail. In the context of resource planning, in-depth insights into costing are given and the topic of claim management, which deals with the handling of supplements, is also dealt with in particular. In the area of construction law, topics relating to the construction contract are dealt with. In addition, the areas of obstructions, liability and limitation periods are also addressed.

Module grade calculation
grade of the module is grade of the exam

Annotation
This module will be offered newly as from summer term 2022.
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Site Management lecture: 15 h
- Site Planning and Handling lecture/exercise: 45 h

independent study:

- preparation and follow-up lectures Site Management: 15 h
- preparation and follow-up lecture/exercises Site Planning and Handling: 30 h
- preparation of student research project: 30 h
- examination preparation: 45 h

total: 180 h

Recommendation
none

Literature
Berner, Fritz; Kochendörfer, Bernd; Schach, Rainer: Grundlagen der Baubetriebslehre 2 Baubetriebsplanung, Imprint: Springer Vieweg, Wiesbaden, 2013
5.94 Module: Environmentally-friendly Recycling and Disassembly of Buildings (bauIM4S06-) [M-BGU-100110]

Responsible: Prof. Dr.-Ing. Sascha Gentes

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

| T-BGU-100146 | Environmentally-Friendly Recycling and Disassembly of Buildings | 6 CR | Gentes |

Competence Certificate

- 'Teilleistung' T-BGU-100146 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students can independently plan demolition, dismantling and disposal work for structural and technical systems, apply for them and implement them on site. They recognize the need and the sense of qualified demolition and the associated recycling related to the entire construction operation. They can explain various methods and procedures for implementation and realization. The students can assess demolition objects and demolition waste according to the current legal situation, implement safety requirements for demolition work and write risk assessments. They are able to evaluate recycling and disposal options and thus independently plan the necessary resources for demolition work (personnel, machines, processes) and create corresponding calculations.

Content

Information about the state of research and technology with respect to machined disassembly, transport, conditioning, dumping, and disposal of demolition waste, as well as the latest developments in machine technology is imparted. The entire approval process from the demolition license application to machine deployment plans will be discussed in addition to technical aspects. This also involves occupational safety, immission control, as well as handling pollutants in buildings to be demolished. Specific tasks, e.g. the partial demolition of existing buildings, will be explained and calculated using existing examples. VDI (The Association of German Engineers) guidelines pertaining to demolition projects will be introduced and an excursion to a recycling facility will provide the opportunity to discuss landfill directives.

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Project Studies lecture, exercise: 30 h
- Disassembly Process Engineering lecture, exercise: 30 h

independent study:

- preparation and follow-up lectures, exercises Project Studies: 30 h
- preparation and follow-up lectures, exercises Disassembly Process Engineering: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation

none
Literature
4) VDI 6202 "Schadstoffsanierung"
5) VDI 6210 "Abbruch"
Module: Upgrading of Existing Buildings and Energetic Refurbishment (bauiM4S07-) [M-BGU-100108]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 3

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Grade(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T-BGU-100621</td>
<td>Term Paper Upgrading of Existing Buildings and Energetic Refurbishment</td>
<td>Lennerts</td>
</tr>
<tr>
<td>4.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T-BGU-108001</td>
<td>Upgrading of Existing Buildings and Energetic Refurbishment</td>
<td>Lennerts</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100621 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-108001 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites

none

Competence Goal

Students understand the economic, ecological and cultural significance of the building stock and to describe the specific tasks for a civil engineer in this field of activity. You can explain the advantages and disadvantages of different maintenance strategies and maintenance budgets can be calculated for real estate stocks. You know the basics of a technical due diligence and the basics of building information modeling. In addition, students may constitute the legal framework for energy rehabilitation measures and can use the methods of the energy performance of buildings apply.

Content

- durability and wear of components
- determination of component lifetimes
- budgeting of maintenance costs
- condition assessment & action planning
- monument and Historic Monuments
- building Information Modeling (BIM)
- policy development and historical development of the energy savings
- forms of energy and calculation of energy use
- energy efficiency of buildings by Energy Saving Ordinance
- renewables

Module grade calculation

grade of the module is CP weighted average of grades of the partial exams

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Upgrading of Existing Buildings lecture, exercise: 45 h
- Energetic Refurbishment lecture: 15 h

independent study:

- preparation and follow-up lectures/exercises Upgrading of Existing Buildings: 30 h
- preparation and follow-up lectures Energetic Refurbishment: 15 h
- preparation of term paper (partial examination): 25 h
- examination preparation (partial examination): 50 h

total: 180 h
Recommendation
none
Module: Real Estate Management (bauIM4S08-) [M-BGU-100346]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100629</td>
<td>Real Estate Management</td>
<td>6 CR Lennerts</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-100629 with oral examination according to § 4 Par. 2 No. 2

Details about the learning control see at the 'Teilleistung'

Prerequisites

None

Competence Goal

Students can distinguish between the prevailing real estate investment alternatives and apply the common controlling instruments in real estate management. They can evaluate real estate by means of different valuation methods and to prepare expert opinions. Furthermore, they can explain the basic features and specifics of real estate management in the public sector and the management of corporate real estate. Furthermore, they have knowledge of the decision-making bases and the implementation of public-private partnership projects and can clarify the benefits and limits of this procurement alternative. Furthermore, the students gain insight into the project development of real estate based on theoretical principles and case studies from practice and are in a position to solve problems in project development.

Content

- controlling in real estate management
- valuation of real estate with the preparation of expert opinions
- special features in the management of corporate real estate
- special features in the real estate management of the public sector
- contract models and financing structures in PPP projects
- theoretical transfer and case studies from practice in the field of project development of real estate
- Onsite Lecture

Module grade calculation

Grade of the module is grade of the exam

Annotation

None

Workload

Contact hours (1 HpW = 1 h x 15 weeks):

- Real Estate Management Controlling lecture: 15 h
- Property Valuation Basics lecture: 15 h
- Corporate and Public Real Estate Management lecture: 15 h
- Project Development with Case Study lecture: 15 h

Independent study:

- preparation and follow-up lectures Real Estate Management Controlling: 15 h
- preparation and follow-up lectures Property Valuation Basics: 15 h
- preparation and follow-up lectures Corporate and Public Real Estate Management: 15 h
- preparation and follow-up lectures Project Development with Case Study: 15 h
- examination preparation: 60 h

Total: 180 h
Recommendation
none
5.97 Module: Lean Construction (bauiM4S09-) [M-BGU-100104]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101007</td>
<td>Project Paper Lean Construction</td>
<td>1.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-108000</td>
<td>Lean Construction</td>
<td>4.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-101007 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-108000 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students are able to explain the theoretical basics of Lean Construction. They are able to choose the right process management approach for a project and to adapt and improve it during the project. Furthermore, students will be able to identify and analyze problems in construction projects from a process perspective. The students are able to explain the different tools of Lean Construction and select, combine and apply them according to the problem.

Content
In this module, the theoretical basics of Lean Construction are presented at the beginning and deepened through learning simulations and exercises. Subsequently, the Last Planner System™, value stream mapping and cooperative contract forms, among others, are examined in depth. Aspects such as construction site logistics, cost and quality management and planning management from a lean perspective. In the exercise, students work in small groups on selected topics based on provided literature and analyze them in the context of the knowledge from the lecture. The results of the small group work are compiled in a written paper and presented at the end of the lecture. To consolidate and reflect on the learning objective, a joint follow-up of the small group work will take place, in which the individual works will be placed in an overall context.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture, exercise: 60 h

independent study:
- preparation and follow-up lectures, exercises: 30 h
- preparation of project with report (partial exam): 30 h
- examination preparation (partial exam): 60 h

total: 180 h

Recommendation
none
Literature
5.98 Module: Advanced Studies in Construction Engineering (bauIM4S10-) [M-BGU-100344]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)

Subject-Specific Supplements

Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-BGU-108003 Advanced Studies in Construction Engineering

6 CR Haghsheno

Competence Certificate

- 'Teilleistung' T-BGU-108003 with written examination according to § 4 Par. 2 No. 1

details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students are able to identify terms and modes of operations of specific construction equipment, combination of devices and special procedural systems in the subject areas earthwork and special underground engineering. They are able to understand and evaluate complex combinations of methods and processes with civil engineering works. Adding to this, they can identify the influence of outside influences to the selected devices and output-tool efficiency. Moreover, the students can amplify fundamental construction methods and construction designs of tunnels and galleries including the corresponding machines and devices as much as basic knowledge in blasting engineering.

Content

Earthwork and Underground Construction:

special equipment features and options of devices, mode of operation of the single devices and systems; process engineering of earthworks while mining, transportation, placing and compacting; influences on efficiency; soil improvement; quality control; transport and controls of devices and equipment; methods of underground construction, including special temporary pit supporting systems and foundations; underground improvements; injections; underpinning; tunneling; caisson construction; freezing of soil; quay walls; harbor constructions; statics of floating systems; support devices.

Tunnels and Blasting Engineering:

geological, rock mechanical and geotechnical parameters for underground constructions (tunnels and galleries, caves, etc.); project-related, process-related, and environmental influences; Machines and devices; special methods and advancements; selection criteria for proper tunnel methods; blasting engineering; explosive substances and blasting techniques; basic legal knowledge for blasting; study trip relating to blasting engineering.

Module grade calculation

grade of the module is grade of the exam

Annotation

none

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Tunnel Construction and Blasting Engineering lecture: 30 h
- Operation Methods for Foundation and Marine Construction lecture: 15 h
- Operation Methods for Earthmoving lecture: 15 h

independent study:

- preparation and follow-up lectures Tunnel Construction and Blasting Engineering: 30 h
- preparation and follow-up lectures Operation Methods for Foundation and Marine Construction: 15 h
- preparation and follow-up lectures Operation Methods for Earthmoving: 15 h
- examination preparation: 60 h

total: 180 h
Recommendation
none
5.99 Module: Decommissioning of Nuclear Facilities (bauIM4S12-) [M-BGU-100345]

Responsible: Prof. Dr.-Ing. Sascha Gentes

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100627 Decommissioning of Nuclear Facilities | 6 CR |

Competence Certificate

- 'Teilleistung' T-BGU-100627 with oral examination according to § 4 Par. 2 No. 2

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can name the processes, equipments and machinery for decommissioning nuclear facilities. They can explain analytical methods for the procedure, the required techniques and processes for decommissioning and can develop decommissioning concepts. They are able to analyse self-reliantly decommissioning projects of nuclear facilities and to work in teams. They can prepare proposal for approval considering the respective laws.

Content
This course provides an overview about the state of research and technology in mechanical process engineering for the decommissioning of nuclear facilities. This involves decontamination procedures, remote-handled procedures, and procedures for the separation of reinforced concrete, etc.

The required approvals and licenses and the involved authorities will be introduced and discussed using examples and legal sources, e.g. the German Atomic Energy Act (Atomgesetz). The basics of radiation protection together with the pertaining measurement technology will be explained in step with actual practice. Furthermore, a suitable system to successfully manage decommissioning projects will be presented as well as the numerous stakeholders involved.

A visit to a nuclear facility currently under decommissioning is part of the course. The new findings will be further discussed in conjunction with existing decommissioning projects which will also be presented by the involved industry partners.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Removal and Decontamination of Nuclear Facilities lecture, exercise: 30 h
- New Development and Optimization of Decommissioning Machine Technology lecture, exercise: 30 h

independent study:

- preparation and follow-up lectures, exercises Removal and Decontamination of Nuclear Facilities: 30 h
- preparation and follow-up lectures, exercises New Development and Optimization of Decommissioning Machine Technology: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
none
Literature
1) Kohli, Rajiv [Hrsg.]: Developments in surface contamination and cleaning - fundamentals and applied aspects, Knovel library, USA, 2008.
5) Fortschrittsbericht über den Stand der BMBF – Stillegungsprojekte und der vom BMBF geförderten FuE-Arbeiten zu 'Stilllegung / Rückbau kerntechnischer Anlagen'
Module: Facility Management in Hospitals and Hospital Management (bauIM4S13-) [M-BGU-100347]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Credits
- 6

Grading scale
- Grade to a tenth

Recurrence
- Each winter term

Duration
- 1 term

Language
- German

Level
- 4

Version
- 2

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109291</td>
<td>Facility Management in Hospitals and Hospital Management</td>
<td>6 CR</td>
<td>Lennerts</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-109291 with examination of other type according to § 4 Par. 2 No. 3

Prerequisites
- none

Competence Goal

Students are able to describe and understand the principle of funding hospitals the basics of the German health care system. You know the cost structures in a hospital and are able to understand the basis of the hospital accounting. Students are able to distinguish primary and secondary processes in a hospital each other. For selected facility management processes (secondary) processes, students can carry out strategic planning. Students understand the basic principles of hospital planning with a focus on master planning, space and function program and layout planning. Furthermore, students can give an overview over a wide range of hospital management.

Content

- hospital financing
- cost structures of a hospital
- facility management processes in hospitals
- strategic planning of selected facility management services
- sustainable hospitals
- master planning, space and function program and layout planning of hospitals
- introduction to hospital management
- internal organizational structures, working conditions and working environment in the hospital

Module grade calculation

Grade of the module is grade of the exam

Annotation
- none

Workload

Contact hours (1 HpW = 1 h x 15 weeks):

- Facility Management in Hospitals lecture/exercise: 45 h
- Hospital Management lecture: 15 h

Independent study:
- preparation and follow-up lecture/exercises Facility Management in Hospitals: 30 h
- preparation and follow-up lectures Hospital Management: 15 h
- preparation of term paper Facility Management in Hospitals and Hospital Management: 75 h

Total: 180 h

Recommendation

Course Facility and Real Estate Management (6200414)
5.101 Module: Building Information Modeling (BIM) (bauiM4S16-) [M-BGU-103916]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-108007 | Building Information Modeling (BIM) | 6 CR | Haghsheno |

Competence Certificate
- ‘Teilleistung’ T-BGU-108007 with examination of other type according to § 4 Par. 2 No. 3

Details about the learning control see at the ‘Teilleistung’

Prerequisites
- none

Competence Goal
The students can describe the BIM method and the theoretical foundations of different perspectives of building digitalisation. Furthermore, they can apply CAD in practice in the construction industry and carry out modelling steps and link the modelled components with further information themselves. The students can present the different interests of the project participants within the framework of BIM and assess the perspectives of different project participants in a construction project. Thus, they are able to work in a team on planning and construction processes with different project participants.

Content
"Building Information Modelling (BIM) is a collaborative working methodology that uses digital models of a building to consistently capture and manage the information and data relevant to its life cycle and to exchange them in transparent communication between the parties involved or to transfer them for further processing" [2]. The module deals with the historical development of the method and provides the theoretical foundations necessary for understanding and applying BIM. Further application possibilities such as linking the building model with production planning and ERP systems or in the area of virtual building simulation are demonstrated. In addition, a project is modelled throughout several process phases in the context of group work, taking into account the goals of various participants. Since the creation of a three-dimensional building model is an essential prerequisite for the application of BIM, an introduction to CAD is provided as part of this module. In addition, CAD exercises are offered for practical application.

Module grade calculation
grade of the module is grade of the exam

Annotation
For participation, it is necessary to have access to a notebook with a Windows operating system (64bit). The required software will be provided as student versions during the course.

Registration procedure:
The number of participants is limited to 50 persons (civil engineering students). Registration details will be published in advance on the institute's homepage. If necessary, a selection will be made taking into account the student's progress. Confirmation of participation will be issued by the end of the first week of lectures.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h
- independent study:
 - preparation and follow-up lecture/exercises, tutorials: 60 h
 - project work, preparation of report and presentation (exam): 60 h
- total: 180 h
Recommendation

course Computer Aided Design (CAD) (6200520)

topic ‘Cost Estimation’ in the course Economics in Construction Operation (6200412) from the module Technology and Management in Construction [bauiBFP6-TMB]

course Site Planning and Handling (6241803) from the module Production Planning and Control in Construction [bauiM4P7-]

Literature

Module: Research Seminar Construction Management (bauiM4S17-) [M-BGU-103917]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-108008 | Research Seminar Construction Management | 6 CR | Haghsheno |

Competence Certificate
- 'Teilleistung' T-BGU-108008 with examination of other type according to § 4 Par. 2 No. 3
- details about the learning control see at the 'Teilleistung'

Prerequisites
- none

Competence Goal
The students can name the principles of the theory of science and different research methods and can apply them self-reliantly to scientific problems in the context of construction management. They are able to prepare self-reliantly scientific papers.

Content

- theory of science
- research methods in context of research questions in construction management
- basics for scientific working
- structure, form and style of scientific papers
- application at example of specific and current research questions in the field of construction management
- intermediate and final presentations of current research with discussion
- semester accompanying seminar paper

Module grade calculation
grade of the module is grade of the exam

Annotation
The module can be started with in the summer and in the winter semester as well. The courses of the module do not depend on each other and can be taken in arbitrary order.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- Research Seminar Construction Management I: 30 h
- Research Seminar Construction Management II: 30 h

independent study:

- preparation and follow-up Research Seminar Construction Management I: 30 h
- preparation and follow-up Research Seminar Construction Management II: 30 h
- project work, preparation of report and colloquium (exam): 60 h

total: 180 h

Recommendation
- none
5.103 Module: Equipment and Special Construction Techniques in Building Practice (bauiM4S18-) [M-BGU-103918]

Responsible: Prof. Dr.-Ing. Sascha Gentes
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 2 terms
Language: German
Level: 4
Version: 1

Mandatory
T-BGU-108009 Equipment and Special Construction Techniques in Building Practice 6 CR Gentes

Competence Certificate
- 'Teilleistung' T-BGU-108009 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can name the basic concepts of the presented construction equipment and special construction processes and are able to describe the structure and function of the devices and the procedures. Furthermore, they are able to assess the respective use of devices and processes and they know the current status of Technology of the treated areas.

Content
In this module, construction management basics of practical topics for work preparation and construction are taught. Various devices and special processes from different areas of construction, from formwork to construction and test methods, are presented and explained, especially with regard to innovative new features.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
 • Equipment and specific Methods in Construction I lecture: 30 h
 • Equipment and specific Methods in Construction II lecture: 30 h

independent study:
 • preparation and follow-up lectures Equipment and specific Methods in Construction I: 30 h
 • preparation and follow-up lectures Equipment and specific Methods in Construction II: 30 h
 • examination preparation: 60 h

total: 180 h

Recommendation
none
5.104 Module: Digitalization in Facility and Real Estate Management (bauIM4S19-) [M-BGU-104348]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Technology and Management in Construction (Compulsory Elective Modules)
Subject-Specific Supplements
Study Focus II / Technology and Management in Construction (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-108941 | Digitalization in Facility and Real Estate Management | 6 CR | Lennerts |

Competence Certificate
- 'Teilleistung' T-BGU-108941 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students will acquire basic knowledge of sensor networks, building automation and the application of the 'Internet of Things' (IoT) in facility and real estate management. They will be able to take a critical look of the technologies of digitization (including network structures, cloud storage, sensor distribution, information privacy, augmented reality) and evaluate them according to the requirements of facility and real estate management. In addition, students will be able to implement simple sensor networks and the basics of 'augmented reality' by using a HoloLens.

Content
- Basic information of concepts of digitalization
- Execute Internet of Things in building automation
- Integration of sensor signals in FM processes
- Visualize of maintenance and inspection work through 'augmented reality' (HoloLens)
- Producing project work during the semester colloquium

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Digitalization in Facility and Real Estate Management lecture/exercise: 60 h
- independent study:
 - preparation and follow-up lecture/exercises Digitalization in Facility and Real Estate Management: 40 h
 - preparation of project Digitalization in Facility and Real Estate Management, incl. report and presentation (examination): 80 h
total: 180 h

Recommendation
none
Module: Digital Technologies in Field Information Modeling (bauIM4S20-) [M-BGU-105638]

Responsible: Jun.-Prof. Dr. Reza Maalek

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2021)
- Subject-Specific Supplements (Usage from 4/1/2021)
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111276</td>
<td>Digital Technologies in Field Information Modeling</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-111276 with examination of other type according to § 4 Par. 2 No. 3

Details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

This course discusses the practical methods to digitally document, model, store, and share required spatial and temporal information throughout the construction project's lifecycle. Students will get familiarized with the different state-of-the-art remote sensing technologies applicable to automating the collection of field construction information. The students will be able to use technologies, such as laser scanners, to automate construction engineering and management processes, including, progress monitoring, quality control, structural integrity assessment, and safety management. Students will be provided with the practical strategies and tools necessary to analyze the acquired field information to promote the seamless transfer of information between the real and digital worlds. These technologies and methodologies will allow the students to apply the domain of field information modeling (FIM) in practical settings.

Content

Construction project information modeling frameworks, such as building information modeling (BIM), heritage building information modeling (H-BIM), or bridge information modeling (BrIM), involve modeling and integrating intelligent and semantic information within multi-dimensional (n-D) computer-aided design (CAD) models. During the design stages, the 3-dimensional (3D) digital model of a construction project can be created, whereby each element is classified based on attributes such as functional type (e.g. structural wall), elemental relationships (e.g. structural wall and floor slab connectivity and interaction), and geometric properties (e.g. shape and size). Further modeling can be carried out so as to integrate project planning and control information, such as work sequences and duration (e.g. 4D BIM), as well as cost (e.g. 5D BIM), enabling the project management team to directly evaluate the impact of design changes on the project's schedule and cost. During construction, the designed n-D model serves as a detailed baseline to aid field construction work. Relevant field data must then be collected and compared to the designed model to ensure compliance. Particularly within the lean project delivery, recording fast, frequent, and reliable field data is desired to foster continual improvement. In the context of schedule and cost control for instance, daily measurement of percent planned complete, recommended as a part of the Last Planner® system, combined with frequent earned value analysis, require up-to-date knowledge of the progress of activities. Hence, Field Information Modeling (FIM) is essential to model and transform collected field data into intelligent, tangible and semantic digital models as a means of promoting the seamless flow of information between the field and the digital worlds. This course is designed to provide the learners with the tools necessary to understand the concept of FIM, the cutting-edge technologies that can be used to foster the FIM process, and methods to fully automate the FIM process along with the challenges, limitations and future progressions.

Module grade calculation

grade of the module is grade of the exam

Annotation

none
Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises, tutorials: 60 h
- project work, preparation of report and presentation (examination): 60 h

Recommendation

module Digital Engineering and Construction [bauiM4S21]
5.106 Module: Digital Engineering and Construction (bauiM4S21-) [M-BGU-105830]

Responsible: Jun.-Prof. Dr. Reza Maalek

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 10/1/2021)

Subject-Specific Supplements (Usage from 10/1/2021)

Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 10/1/2021)

Credits 6

Grading scale Grade to a tenth

Recurrence Each winter term

Duration 1 term

Language English

Level 4

Version 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111695</td>
<td>Digital Engineering and Construction</td>
<td>6 CR</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-111604 with examination of other type according to § 4 Par. 2 No. 3

details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students will be able to describe the main digital technologies for the engineering design process throughout the lifecycle of construction projects. They can explain the role of the practical applications of these technologies within the engineering design process of a real project. They are also able to apply some selected basic principles of these technologies in practical settings in the context of lab assignments.

Content
Recent advancements in digital and remote sensing technologies in construction engineering and management is paving the path to the conception of industry 4.0 in construction (construction 4.0). A full digitization and automation of the construction industry is projected to produce annual cost savings of around € 1.3 trillion globally compared to current practices according to the most reliable sources (e.g., World Economic forum). The full digitization and automation must start from the early design stages of the project and continue throughout the construction, facility management and operations, and dismantling phases. The advancements in digital technologies now enables large scale 3D visualization, 4D and 5D simulation, design enhancements and optimizations, which were amiss in traditional design practices. The growth in information technologies has enabled the addition of intelligence through information modeling concepts onto a single model, which can then be utilized for further engineering analysis (e.g., solar, wind, structural), design optimization, and clash detection, particularly in larger projects. With the introduction of virtual reality tools, project stakeholders can now virtually walk through the project (e.g., a building) before it is built, which can reduce the possibility of change orders due to misunderstanding of design requirements. To further enhance communication between the construction labourers and the digital design, augmented and mix reality has been showing potential. This can further mitigate the risk of incorrect construction, saving time and cost of rework due to miscommunication of expectations. Another possibility is robotics and additive manufacturing, which can further help mitigate the risk of information loss between the digital and real worlds. Finally, to ensure the built complies with the design in terms of design standards and requirements, field information, such as 3D point clouds using laser scanners or smartphones, and non-destructive testing (NDT) methods can be performed so as to determine the discrepancies early on and prevent costly rework when the degree of influence on the project becomes less. This course is designed to provide the learners with the tools necessary to understand the digital engineering and construction framework, and the cutting-edge technologies used to foster construction automation, along with the challenges, limitations and future progressions.

Module grade calculation
grade of the module is grade of the exam

Annotation
newly offered as from winter tem 2021/22
Workload
contact hours (1 HpW = 1 h x 15 weeks):
 • lecture/lab assignment: 60 h

independent study:
 • preparation and follow-up lecture/lab assignments: 60 h
 • examination preparation: 60 h

total: 180 h

Recommendation
modules Building Information Modeling (BIM) [bauM4S16-], Digital Planning and Building Information Modeling [bauM1S42-DIGIPLAN]
course Computer Aided Design (CAD) (6200520)
M.107 Module: Leadership and Communication (bauiM4S22-) [M-BGU-105917]

Responsible: Prof. Dr.-Ing. Shervin Haghseno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-BGU-111900 Leadership and Communication 6 CR Haghseno

Competence Certificate
- 'Teilleistung' T-BGU-111900 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Prerequisites
The module must not be taken together with the module Business and Human Resource Management [bauiM4S01-] not offered anymore.

Competence Goal
Students are taught how to explain the basics of leadership. They are able to classify leadership in the business management functions. They will also be able to list, describe and differentiate between various organizational and legal forms of companies. In the context of strategic planning, they can recognize types of strategy in construction companies and analyze their implementation. In the context of labor law, students will be able to define the concept of employee and distinguish it from self-employment. They are aware of the essential elements of a legally compliant admonition, warning and termination and are able to draft these writings.

The students are furthermore able to describe different communication models and to apply different communication techniques. They can explain the important basics from the topic area of public participation and know the associated concepts and methods. Furthermore, they are able to describe the components of conflict management systems and know about the role of communication in the context of conflict prevention as well as conflict resolution and are sensitized to the stages of conflict escalation. They also know methods of conflict resolution and can explain the concept of mediation in particular.

Content
In the area of management, generic strategies for construction companies and their implementation in the context of organizational structures and legal forms are taught. The procedures and processes for developing a corporate strategy and its implementation are explained. Furthermore, leadership principles as well as tasks and tools in the context of leadership are taught. The fundamentals and methods of personnel management, including determining personnel requirements, development, recruitment and motivation, are dealt with and illustrated by means of an example. In addition, the basics of labor law are taught with a focus on personnel management and personnel responsibility.

In the area of communication, communication models and communication techniques are presented and their application is tested with the help of a group exercise. As an example of communication in the context of construction projects, the topic of public participation is dealt with. In addition to the theoretical basics, a practical example will be presented. Furthermore, the topic of communication in conflict situations will be discussed with the aspects of conflict prevention, escalation and resolution. Furthermore, methods of conflict resolution are presented with a focus on the concept of mediation.

Module grade calculation
grade of the module is grade of the exam

Annotation
This module will be offered newly as from summer term 2022.
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation
keine
5.108 Module: Real Estate and Facility Management - on Site Lectures (bauIM4S23-) [M-BGU-105924]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale Grade to a tenth</th>
<th>Recurrence Each winter term</th>
<th>Duration 1 term</th>
<th>Language German</th>
<th>Level 4</th>
<th>Version 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-111909 with examination of other type according to § 4 Par. 2 No. 3
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students can work independently on questions from real estate-related practice (research or application-oriented) using scientific methods and structure a given problem and present the results orally. They can select and apply methods and instruments appropriate to the problem in a well-founded manner. The students can work out the 'state-of-the-art' of a problem and a procedure for the solutions of the practical cases, to critically question and, if necessary, to adapt as well as to discard the previously worked out solution results accordingly and to derive new ones.

Content

- systematic evaluation, practice and application of scientific methods in the context of real estate-related practice
- specifying research objectives and conducting literature research
- drafting and elaboration of a research design
- derivation of scientifically based decisions for real estate-related practice
- presentation of the results

Module grade calculation

grade of the module is grade of the exam

Annotation

This module will be offered newly as from winter term 2022/23.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 40 h
- work on student project incl. report and presentation/colloquium: 80 h

total: 180 h

Recommendation

modules Real Estate Management [bauIM4S08], Facility Management [bauIM4S24]
Module: Facility Management (bauiM4S24-) [M-BGU-105922]

5.109 Module: Facility Management (bauiM4S24-) [M-BGU-105922]

Responsibility: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-111908</th>
<th>Facility Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 CR</td>
<td>Lennerts</td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-111908 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the 'Teilleistung'

Prerequisites

none

Competence Goal

The students can name the term as well as the goals and tasks of FM and explain and differentiate the structures and work areas of commercial, infrastructural, and technical FM.

The students can classify and communicate risks for owners and operators of facilities and assign the operator responsibility to different actors. They can recognise, assess, and communicate potential legal consequences.

Furthermore, the students can name the basics of the concepts in maintenance management in general as well as in the areas of construction and maintenance.

The students can also apply the central standards, guidelines and laws of space management, measure and evaluate space utilisation costs and assess potentials for space optimisation in companies.

Content

- introduction to commercial, infrastructural, and technical FM
- maintenance management
- space management
- resources management
- operator responsibility

Module grade calculation

grade of the module is grade of the exam

Annotation

This module will be offered newly as from winter term 2022/23.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- examination preparation: 60 h

total: 180 h

Recommendation

none
Module: Technology and Production Methods in Turnkey Construction and Civil Engineering Works (bauiM4S25-) [M-BGU-105913]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)

Credits 6
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language German
Level 4
Version 1

Mandatory
T-BGU-111899 Technology and Production Methods in Turnkey Construction and Civil Engineering Works 6 CR Haghsheno

Competence Certificate
- 'Teilleistung' T-BGU-111899 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Prerequisites
The module must not be taken together with the module Turnkey Construction [bauiM4S15-] not offered anymore.

Competence Goal
The students are able to describe and apply fundamental process and production methods, especially regarding to technical building services. Moreover, they are able to amplify fundamental processes in the subject area of turnkey construction and to analyze correspondent contexts and workflows.

Adding to this, the students are able to amplify essential elements of selected civil engineering structures and, regarding to this, comprehend typical production methods. Furthermore, the students are able to choose, amplify and analyze appropriate production methods for civil engineering structures.

Content
In the subject area of turnkey construction besides the detailed design of shell construction, technical support and technical building services, there is also an explanation of the related basic knowledge in engineering. Also, basics of the technical support belong to the curriculum, e.g., heating installations, ventilation systems, A/C, electric installations. Most of all, there is a focus on regenerative energies. Furthermore, the explanation of the processes in turnkey construction, from design and construction permit to final acceptance of work, is part of the lecture.

In the subject area of civil engineering structures and regenerative energies, besides basic knowledge in construction, there is also a focus on production methods for the construction and maintenance of the selected civil engineering structures. Adding to conventional construction methods there are topics like additive manufacturing in solid construction. This also includes the view on hydraulic constructions (e.g. water locks), waste disposal (e.g. waste disposal sites) and infrastructure constructions (e.g. steel composite bridge). Also, there is a focus on regenerative energies (e.g. wind power stations).

Module grade calculation
grade of the module is grade of the exam

Annotation
This module will be offered newly as from summer term 2022.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Turnkey Construction lecture/exercise: 30 h
- Civil Engineering Structures and Regenerative Energies lecture/exercise: 30 h

independent study:
- preparation and follow-up lecture/exercises Turnkey Construction: 30 h
- preparation and follow-up lecture/exercises Civil Engineering Structures and Regenerative Energies: 30 h
- examination preparation: 60 h

total: 180 h
Recommendation
none

Literature
Bundesamt für Justiz (Hg.) (2020): Verordnung über die Honorare für Architekten- und Ingenieurleistungen (Honorarordnung für Architekten und Ingenieure - HOAI), Anlage 12
Module: Lean Integrated Project Delivery (Lean IPD) (bauIM4S26-) [M-BGU-105925]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111911</td>
<td>Project Lean Integrated Project Delivery</td>
<td>3 CR</td>
<td></td>
<td>Haghsheno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-111910</td>
<td>Lean Integrated Project Delivery</td>
<td>3 CR</td>
<td></td>
<td>Haghsheno</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-111911 with examination of other type according to § 4 Par. 2 No. 3
- 'Teilleistung' T-BGU-111910 with written examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective 'Teilleistung'

Prerequisites

None

Competence Goal

Students will be able to describe the basic approaches of Integrated Project Delivery (IPD) and its international models (IPD, Alliancing, Project Partnering) and to explain the associated functionalities and elements (values, culture, organization, economics, methods, and legal characteristics of a multi-party contract). In particular, they are able to analyze the interrelationships between IPD and lean management approaches and to present them from different perspectives. In addition, students will be able to apply appropriate Lean methods using practical examples for the development, planning and execution phases of construction projects, which are essential for the success of IPD projects (including Conditions of Satisfaction, Target Value Design, Set based Design, Choosing by Advantages).

Content

The following content will be covered in this module:

- challenges of traditional project delivery models in the construction industry
- basics of Integrated Project Delivery as an innovative approach, incl. the development in the international context
- development of IPD in Germany
- characteristics and model elements of IPD
- phase model of Integrated Project Delivery
- specifics of multi-party contracts and the selection process of project partners
- IPD from the perspective of lean management philosophy
- selected Lean methods with special relevance for IPD projects (Conditions of Satisfaction, Target Value Design, Set based Design, Choosing by Advantages)

In the context of a case study, the contents of an IPD project are worked on by teams. The results of the case study are documented in the form of a report and presented by the students at the end of the module.

Module grade calculation

Grade of the module is CP weighted average of grades of the partial exams

Annotation

This module will be offered newly as from summer term 2023.

The module set-up follows the 'flipped classroom' approach. This means that after a short common introduction the case study is to be prepared by team work. At selected dates events (meetings, interim presentations etc.) in the plenum are arranged.
Workload
contact hours (1 HpW = 1 h x 15 weeks):
 - lecture/exercise: 45 h

independent study:
 - preparation and follow-up lecture/exercises: 45 h
 - case study as team work, preparation of report and presentation (partial examination): 45 h
 - examination preparation (partial examination): 45 h

total: 180 h

Recommendation
module Lean Construction [bawiM4S08-]

Literature
Module: Agile Project Management in Facility and Real Estate Management (bautM4S27-) [M-BGU-105920]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)
Subject-Specific Supplements (Usage from 4/1/2022)
Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)

Credits 6
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language English
Level 4
Version 1

Mandatory
T-BGU-111906 Agile Project Management in Facility and Real Estate Management 6 CR Lennerts

Competence Certificate
- 'Teilleistung' T-BGU-111906 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students get familiar with the basics of agile PM and can name and explain the different roles and their tasks in relevant project teams. In addition, the tasks of the different roles in project teams are taught from an agile perspective as well as agile principles and the Scrum method. They can describe, compare and differentiate between different agile PM methods. Through the semester-long project work, the students can apply learned team management principles and innovative techniques such as prototyping, design thinking, etc., to a practical application in the field of real estate and facility management. Thereby, the students recognize the most important roles and processes in the context of a small and less complex project and subsequently acquire broad knowledge of agile project management and the practical application for planning and controlling projects.

Content
- agile project management: terminology and principles
- scrum method: roles, artifacts & in-class method simulation
- team dynamics: development phases & conflict management
- overview on prototyping & visualization tools & techniques
- design thinking & innovation

Module grade calculation
grade of the module is grade of the exam

Annotation
This module will be offered newly as from summer term 2023.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h
independent study:
- preparation and follow-up lecture/exercises: 40 h
- preparation of project Agile Project Management in Facility and Real Estate Management, incl. report and presentation (examination): 80 h

total: 180 h

Recommendation
none
Module: Seminar Construction Machinery (bauIM4S28-) [M-BGU-105921]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)
- Subject-Specific Supplements (Usage from 4/1/2022)
- Study Focus II / Technology and Management in Construction (Compulsory Elective Modules) (Usage from 4/1/2022)

Credits 6
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language German
Level 4
Version 1

Mandatory
T-BGU-111907 Seminar Construction Machinery 6 CR Haghsheno

Competence Certificate
- 'Teilleistung' T-BGU-111907 with examination of other type according to § 4 Par. 2 No. 3
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can describe the functions and the use of different machine components. Furthermore, they can identify the different components of a construction machine on a real object of study. In addition, they are able to explain and plan the usage of specific components for concrete machine functions. The students can identify different malfunctions. They can evaluate maintenance repair work activities. In specific cases they manage some maintenance activities by themselves.

The students are capable of describing how selected construction machine sensors work. Furthermore, they can choose which sensors are appropriate for scientific test setups to examine machine and process optimization.

Also, the students learned to develop solutions for construction machine specific tasks by themselves. These solutions should be in accordance with the rules of good scientific practice.

Content
The teaching content is orientated on specific construction machines. The focus in each semester will be on one or several various machines. This is the reason why the specific content can variate from semester to semester.

The following content is part of the seminar:

- function, design and areas of application for specific construction machines
- function of specific machine components (for example hydraulic systems, motors, sensors and other machine components)

Module grade calculation
grade of the module is grade of the exam

Annotation
This module will be offered newly as from summer term 2022.

The content of the seminar will be created together between the lecturers and the students. Beside theoretical parts there will be practical exercises on our testing field in Linkenheim-Hochstetten. For the successful participation of the seminar a regular presence will be necessary.

IMPORTANT: The number of participants is limited to 10 students. Further information for the application procedure will be announced on the homepage of the institute. When necessary, the academic progress of the student is going to decide which student will be chosen to attend on the course. The latest point of the confirmation is the end of the first week in the semester.
Workload
contact hours (1 HpW = 1 h x 15 weeks):

- seminar/field exercise: 60 h

independent study:

- preparation and follow-up seminar/field exercises: 60 h
- portfolio, incl. report and presentation (examination): 60 h

total: 180 h

Recommendation
none

Literature
Module: Theoretical Soil Mechanics (bauiM5P1-THEOBM) [M-BGU-100067]

Responsible: apl. Prof. Dr. Andrzej Niemunis

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Geotechnical Engineering (Compulsory Modules)
- Subject-Specific Supplements
- Study Focus II / Geotechnical Engineering (Compulsory Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100067 | Theoretical Soil Mechanics | 6 CR | Niemunis |

Competence Certificate
- 'Teilleistung' T-BGU-100067 with written examination according to § 4 Par. 2 No. 1
- Details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students obtained a scientific based understanding of the essential behavior of soil under monotonic and cyclic load with and without effects of time regarding large and small deformations. They are able to describe relations in soil mechanics mathematically and physically correctly. They can understand the tensorial terminology of modern geotechnical literature and can apply computing programs to comprehend element tests. They recognize self-reliantly relevant mechanisms of boundary value problems and can specify the limitations of simple engineering models.

Content
advanced theoretical basics of soil behavior:
- geotechnical invariants of stress and strain
- failure criteria according to Coulomb, Matsuoka-Nakai etc.
- contractancy and dilatancy
- critical density
- failure criteria according to Krey-Tiedemann
- soil behavior under partial saturation
- collapse theorems and their application (Kinematic Element Analysis)
- elasticity in soil mechanics (isotropic and anisotropic)
- elastoplasticity with volumetric hardening using the example of the Cam-Clay-Model
- soil behavior under cyclic loading
- one-dimensional viscoplasticity

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture/exercise: 60 h

independent study:
- preparation and follow-up lecture/exercises: 30 h
- working with available software: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
fundamentals in soil mechanics and continuum mechanics, module Basics of Numerical Modelling [bauiM5P4-NUMGRUND]
Literature
Niemunis (2009): Über die Anwendung der Kontinuumstheorie auf bodenmechanische Probleme (download)
5.115 Module: Earthworks and Foundation Engineering (bauiM5P2-ERDGB) [M-BGU-100068]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Study Focus I / Geotechnical Engineering (Compulsory Modules)
Subject-Specific Supplements
Study Focus II / Geotechnical Engineering (Compulsory Modules)

Credits
6
Grading scale
Grade to a tenth
Recurrence
Each winter term
Duration
1 term
Language
German
Level
4
Version
2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100068</td>
<td>Earthworks and Foundation Engineering</td>
<td>4 CR</td>
<td></td>
<td>Each winter term</td>
<td>German</td>
</tr>
<tr>
<td>T-BGU-100178</td>
<td>Student Research Project 'Earthworks and Foundation Engineering'</td>
<td>2 CR</td>
<td></td>
<td></td>
<td>German</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100178 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100068 with written examination according to § 4 Par. 2 No. 1
details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
With regard to geotechnical constructions the students are able to select and apply appropriate methods for exploration, modelling, dimensioning, realization and control in the case of complex requirements on average. They can apply this knowledge to earthworks and embankment engineering, can identify all geotechnically relevant problems occurring with dams and can apply self-reliantly design and dimensioning rules in outline. They gained geotechnical competence in solving problems for all kind of constructions in and with unconsolidated rocks, also with respect to the managerial organization, expense budgeting, use of documents and presentation of results.

Content
The module deepens the safety concepts in earthworks and foundation engineering and the project design for foundation problems by means of several examples (foundations on soft soil, variants of construction pit supporting system, stabilization and drainage of embankments, slope stabilization, retaining structure, underpinning) and explains the observation method. Basics of earthworks and foundation engineering are presented such as building materials for dams, design requirements, construction of dams, sealing and stability of filled dams. Further basics are computation of seepage and the evaluation of erosion, suffosion, piping, colmatation and joint erosion.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Foundation Types lecture/exercise: 30 h
- Basics in Earthworks and Embankment Dams lecture/exercise: 30 h

independent study:
- preparation and follow-up lecture/exercises Foundation Types: 10 h
- preparation and follow-up lecture/exercises Basics in Earthworks and Embankment Dams: 10 h
- preparation of student research project: 60 h
- examination preparation: 40 h

total: 180 h

Recommendation
basic knowledge of Soil Mechanics and Foundation Engineering;
compilation and submission of student research project as examination preparation until examination date
Literature
[1] Witt, K.J. (2008), Grundbau-Taschenbuch, Teil 1,
Module: Rock Mechanics and Tunneling (bauiM5P3-FMTUB) [M-BGU-100069]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Geotechnical Engineering (Compulsory Modules)
- Subject-Specific Supplements
- Study Focus II / Geotechnical Engineering (Compulsory Modules)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German

Level: 4

Version: 2

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Module: Rock Mechanics and Tunneling (bauiM5P3-FMTUB) [M-BGU-100069]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100069</td>
<td>Rock Mechanics and Tunneling</td>
</tr>
<tr>
<td>T-BGU-100179</td>
<td>Student Research Project 'Rock Mechanics and Tunneling'</td>
</tr>
<tr>
<td></td>
<td>5 CR</td>
</tr>
<tr>
<td></td>
<td>1 CR</td>
</tr>
<tr>
<td></td>
<td>Stutz</td>
</tr>
<tr>
<td></td>
<td>Stutz</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100179 with not graded accomplishment according to § 4 Par. 3
- 'Teilleistung' T-BGU-100069 with written examination according to § 4 Par. 2 No. 1

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students understand the essential strength and deformation properties of rock and master the basic analytical methods to solve boundary value problems of surface and underground rock excavation. They can select basic construction methods and constructions in underground tunnel construction and apply self-reliantly the methods of rock mechanics and static calculation and safety assessments. With regard to the assessment of variants, costs, construction operation and safety aspects they gained geotechnical competence in solving problems for all kind of constructions in and with solid rocks.

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Basics in Rock Mechanics lecture/exercise: 30 h
- Basics in Tunnel Construction lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Basics in Rock Mechanics: 20 h
- preparation and follow-up lecture/exercises Basics in Tunnel Construction: 20 h
- preparation of student research project: 20 h
- examination preparation: 60 h

Recommendation
basic knowledge of Soil Mechanics and Foundation Engineering (respective topics of the bachelor study program 'Civil Engineering' are required);
basic knowledge of Engineering Geology;
Literature
[8] Müller, L. 1978: Der Felsbau, Bd. 3 Tunnelbau
5.117 Module: Basics of Numeric Modeling (bauiM5P4-NUMGRUND) [M-BGU-100070]

Responsible: apl. Prof. Dr. Andrzej Niemunis
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Study Focus I / Geotechnical Engineering (Compulsory Modules)
 Subject-Specific Supplements
 Study Focus II / Geotechnical Engineering (Compulsory Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106196</td>
<td>Continuum Mechanics</td>
<td>3 CR</td>
<td>Franke</td>
</tr>
<tr>
<td>T-BGU-106197</td>
<td>Numerics in Geotechnics</td>
<td>3 CR</td>
<td>Niemunis</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-106196 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-106197 with oral examination according to § 4 Par. 2 No. 2
Details about the learning controls see at the respective 'Teilleistung'

Prerequisites
This module must not be selected together with the module Continuum Mechanics of Heterogeneous Solids [bauiM1S32-KONTIMECH].

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-BGU-100064 - Continuum Mechanics of Heterogeneous Solids must not have been started.

Competence Goal
The students are familiar with the general concepts of continuum mechanics and their application to engineering, specifically geotechnical problems. They know operational methods for the discretization of the typical differential equations. They are able to comprehend the modelling of geomechanical boundary value problems using Finite Difference and Finite Element Methods and to work independently on standard problems. They can assess the failure potential of numerical calculations, select commercial FE-codes reasonably and test and evaluate FE results critically.

Content
see German version

Module grade calculation
Grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
Contact hours (1 HpW = 1 h x 15 weeks):

- Continuum Mechanics lecture: 30 h
- Numerics in Geotechnics lecture: 30 h

Independent study:

- preparation and follow-up lectures Continuum Mechanics: 15 h
- examination preparation Continuum Mechanics (partial exam): 30 h
- preparation and follow-up lectures Numerics in Geotechnics: 15 h
- exercises with available software: 30 h
- examination preparation Numerics in Geotechnics (partial exam): 30 h

Total: 180 h

Recommendation
Course 'Introduction to Continuum Mechanics' (6200607) or similar basic knowledge
Literature

Module: Special Issues of Soil Mechanics (bauiM5S01-SPEZBM) [M-BGU-100005]

Responsible:
Prof. Dr.-Ing. Hans Henning Stutz

Organisation:
KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
Subject-Specific Supplements

Credits
6

Grading scale
Grade to a tenth

Recurrence
Each winter term

Duration
1 term

Language
German

Level
4

Version
1

Mandatory

<table>
<thead>
<tr>
<th>T-BGU-100071</th>
<th>Special Issues of Soil Mechanics</th>
<th>6 CR</th>
<th>Stutz</th>
</tr>
</thead>
</table>

Competence Certificate
- ’Teilleistung’ T-BGU-100071 with oral examination according to § 4 Par. 2 No. 2
- details about the learning control see at the ’Teilleistung’

Prerequisites
none

Competence Goal
The students master a wide range of mechanical, hydraulic and numerical tools for the processing of specific soil mechanical problems. They can comprehend the cross-linking of hydraulic, mechanical and chemical processes under partial saturation. They can use the dynamic and cyclic laboratory techniques and apply material laws operationally for the calculation and calibration of experiments. They can describe and evaluate constructionally vibrations and waves in elastic continua and real soils in the range of strains from small shakes up to earthquakes.

Content
see German version

Module grade calculation
grade of the module is grade of the exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Unsaturated, Viscous and Cyclic Soil Behaviour - Theory and Element Tests lecture/exercise: 30 h
- Soil Dynamics lecture/exercise: 30 h

independent study:

- preparation and follow-up lecture/exercises Soil Dynamics: 15 h
- exercises with available software: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
module Theoretical Soil Mechanics [bauiM5P1-THEOBM]
Module: Ground Investigation (bauiM5S02-BERKUND) [M-BGU-100071]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Study Focus I / Geotechnical Engineering (Compulsory Elective Modules)
- Study Focus II / Geotechnical Engineering (Compulsory Elective Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100072 | Ground Investigation | 6 CR | Stutz |

Competence Certificate
- 'Teilleistung' T-BGU-100072 with oral examination according to § 4 Par. 2 No. 2

Details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can conduct the standard experiments common in soil mechanics by themselves, define appropriate experimental conditions, analyse and control the experiments purposefully and derive constructionally conclusions. They are familiar with the common field experiments in unconsolidated rocks, they can plan, control, analyse and interpret these. They conducted experiments exemplarily by themselves.

Content
The module covers standard tests in soil mechanics, starting with indexing experiments, determination of shear parameters and water permeability through to different triaxial tests. The different types of explorations, measurement of density and stiffness as well as determination of interface structures in rocks are demonstrated in field experiments. It is discussed which requirements the types of experiments define for exploratory drilling and sample quality, which laboratory and field experiment or experimental conditions respectively are required for the evaluation of the ground and foundation and how drillings can be converted to monitoring wells.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Soil Mechanical Laboratory Exercises: 30 h
- Geomechanical Field Exercise: 30 h
- preparation and follow-up of experiments in the laboratory, own repeating experiments: 30 h

independent study:

- preparation and follow-up Soil Mechanical Laboratory Exercises: 15 h
- preparation and follow-up Geomechanical Field Exercise: 15 h
- examination preparation: 60 h

total: 180 h

Recommendation
none
5.120 Module: Applied Geotechnics (bauiM5S03-ANGEOTEC) [M-BGU-100072]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- Study Focus I / Geotechnical Engineering (Compulsory Elective Modules)
- Subject-Specific Supplements
- Study Focus II / Geotechnical Engineering (Compulsory Elective Modules)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 2

Mandatory
T-BGU-100073 Applied Geotechnics 6 CR Stutz

Competence Certificate
- 'Teilleistung' T-BGU-100073 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students make a self-dependent reasonable design decisions for pile foundations and excavations with regard to geological engineering, site managing and economical boundary conditions. They can assess the interaction of building, foundation and subsoil and can establish simple mechanical models by themself and use numerical tools customary in practice as well. They can describe and use relevant guidelines and can link constructional experience, dimensioning rules and standardization to theoretical knowledge about soil mechanical laws.

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Foundations and Retaining Structures lecture/exercise: 30 h
- Special Foundation Engineering and Design lecture/exercise: 30 h
- field trips: 10 h

independent study:

- preparation and follow-up lecture/exercises Foundations and Retaining Structures: 25 h
- preparation and follow-up lecture/exercises Special Foundation Engineering and Design: 25 h
- examination preparation: 60 h

total: 180 h

Recommendation
module Earthworks and Foundation Engineering [bauiM5P2-ERDGB]

Literature
Module: Ground Water and Earth Dams (bauiM5S04-GWDAMM) [M-BGU-100073]

Responsibility: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Subject-Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-100091 | Ground Water and Earth Dams | 6 CR | Bieberstein |

Competence Certificate
- 'Teilleistung' T-BGU-100091 with oral examination according to § 4 Par. 2 No. 2
 details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can describe the deepened knowledge about different geotechnical groundwater problems. They can dimension dewatering under very different boundary conditions and demonstrate geohydraulic relationships by example calculations. They are able to develop own solution approaches for dam construction problems, to evaluate construction techniques and to conduct the requested geotechnical proofs.

Content
The module discusses the investigation of the groundwater conditions in laboratory and field. Geohydraulic fundamentals are extended with respect to anisotropy, saturation fronts, air permeability and groundwater drawdown under specific boundary conditions. The construction of flow nets is applied to seepage problems and the underseepage of dams. The hydrologic hydraulic and geotechnical design of dams is deepened. Hereby, the design of artificial sealings and filters is linked to the geomechanical proofs such as sliding, spread and uplift stability, deformation and earthquake design. Buried auxiliary structures, dams designed for overtopping as well as metrological monitoring of dams are mentioned, too.

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Geotechnical Ground Water Problems lecture/exercise: 30 h
- Embankment Dams (Advanced) lecture/exercise: 30 h
- field trips: 10 h

independent study:
- preparation and follow-up lecture/exercises Geotechnical Ground Water Problems: 25 h
- preparation and follow-up lecture/exercises Embankment Dams (Advanced): 25 h
- examination preparation: 60 h

total: 180 h

Recommendation
module Earthworks and Foundation Engineering [bauiM5P2-ERDGB]

Literature
Module: Rock Engineering and Underground Construction (bauiM5S05-FELSHOHL) [M-BGU-100074]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Subject-Specific Supplements

M Mandatory
T-BGU-100074 Rock Engineering and Underground Construction 6 CR Stutz

Competence Certificate
- 'Teilleistung' T-BGU-100074 with written examination according to § 4 Par. 2 No. 1
 details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students are familiar with planning, construction and design of safety systems for embankments and hillsides in bedrock. They can identify critical failure mechanisms, conduct respective stability analyses and design anchoring. They know setup and function of tunnel boring machines and tunneling techniques by own perception and can select appropriate tunnel boring technologies. They can transfer deepened knowledge about strength and deformation properties of bedrock and the precursory and accompanied exploration to the rehabilitation of existing tunnels.

Content
see German version

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
 • Aboveground Rock Engineering lecture/exercise: 30 h
 • Tunnel Construction in Soils and in Existence lecture/exercise: 30 h
 • field trips: 10 h

independent study:
 • preparation and follow-up lecture/exercises Aboveground Rock Engineering: 25 h
 • preparation and follow-up lecture/exercises Tunnel Construction in Soils and in Existence: 25 h
 • examination preparation: 60 h

total: 180 h

Recommendation
module Rock Engineering and Tunneling [bauiM5P3-FMTUB]

Literature
Module: Numerical Modelling in Geotechnics (bauM5S06-NUMMOD) [M-BGU-100075]

Responsible: apl. Prof. Dr. Andrzej Niemunis
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Subject-Specific Supplements

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 2

Mandatory

| T-BGU-100107 | Numerical Modelling in Geotechnics | 6 CR | Niemunis |

Competence Certificate
- 'Teilleistung' T-BGU-100107 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can develop numerical solutions for typical geotechnical boundary value problems by themself and implement them by programming with FORTRAN95. They got to know FE applications in several fields of geotechnics (foundation, rock and tunnel construction, dam construction), got practical experience with the FE code ABAQUS (TM) and applied this for the modeling of example problems. They are able to interpret and evaluate critically results of numerical simulations.

Content
- beam on elastic half-space
- slope stability with layer procedure according to Bishop
- 2D and 3D pile rafts with lateral bedding
- FE-modeling of spatially correlated fluctuations of soil parameters
- FE settlement prediction with nonlinearity for small strains
- introduction to the FE-program ABAQUS: definition of joints and elements, assignment of material laws, definition of initial and boundary conditions
- examples of FE-applications in tunnel engineering
- numerical FE-modeling of a deep pit excavation under consideration of the construction sequence
- numerical FE-modeling of seepage through a zoned dam with partial saturation (different load cases)
- linear dynamics using ABAQUS

Module grade calculation
grade of the module is grade of the exam

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Exercises in Numerical Modelling: 30 h
- FEM Applications in Geotechnical Modelling lecture: 30 h

independent study:
- preparation and follow-up Exercises in Numerical Modelling: 15 h
- preparation and follow-up lectures FEM Applications in Geotechnical Modelling: 15 h
- exercises with available software: 30 h
- examination preparation: 60 h

total: 180 h

Recommendation
module Basics of Numeric Modelling [bauM5P4-NUMGRUND]
Literature
5.124 Module: Geotechnical Testing and Measuring Technology (bauiM5S07-VERSMESS) [M-BGU-100076]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Subject-Specific Supplements

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100075 with oral examination according to § 4 Par. 2 No. 2
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
The students can classify the procedures and methods for subsoil exploration and testing techniques even those surpassing standard procedures. They are able to select reasonably appropriate combinations of techniques based on the specific application conditions and prerequisites. They can explain basic knowledge in geophysics, measurement technologies and the functioning principles of sensors and data acquisition. As a result of this they can select equipment reasonably with respect to resolution, accuracy, long term stability and interpretation. They have own experiences with the handling of sensor application, wiring, data acquisition, control elements, measuring and analysis procedures.

Content
The module deepens aspects of geotechnical experiments. Specific experiments from rock mechanics and dam and embankment construction as well as the test of rheologic properties are presented. The students obtain also insight into geophysical exploratory methods. Further, basics with respect to the selection of appropriate sensors measuring physical, dynamic and electrical quantities, optical methods, correlation measurement techniques, influences of errors, data transfer, data acquisition as well as controlling concepts. The setup and test of a measurement chain for field measurements is practiced.

Module grade calculation
none

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Rock Testing lecture: 15 h
- Testing in Dam and Wastefill Engineering lecture: 15 h
- Geotechnical Measuring Technology lecture/exercise: 30 h
- preparation and follow-up of experiments in the laboratory, own repeating experiments: 25 h

independent study:

- preparation and follow-up lecture Rock Testing: 10 h
- preparation and follow-up lecture Testing in Dam and Wastefill Engineering: 10 h
- preparation and follow-up lecture/exercise Geotechnical Measuring Technology: 15 h
- examination preparation: 60 h

total: 180 h

Recommendation
module Ground Investigation (bauiM5S02-BERKUND)
5.125 Module: Special Underground Engineering (bauiM5S08-SPEZTIEF) [M-BGU-100078]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Subject-Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100080</td>
<td>Ground Improvement, Grouting and Soil Freezing</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-BGU-100079</td>
<td>Anchoring, Piling and Slurry Wall Technology</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- 'Teilleistung' T-BGU-100080 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-100079 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can name performance, ranges of application, necessary preliminary investigations and accompanying controls (monitoring) for special underground engineering technologies. They can select self-reliantly appropriate technologies for certain construction problems, describe and dimensioning the steps of the procedure, motivate required preinvestigations, specify parameters for the realization and define the type of controls of execution. They can describe the principles of the observation method and the construction measurement technology and the controls for quality assurance.

Content
The module goes into specific construction techniques of special underground engineering and discusses questions of application limitation, of designing and proofs of safety, requirements for equipement, execution controls and advices for avoiding errors and minimizing risks:

- soil freezing techniques
- injection techniques
- soil improvement techniques
- implementation of slurry and seal walls
- drilling and anchor techniques for grouted anchors
- execution of piles

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- Ground Improvement, Grouting and Soil Freezing lecture/exercise: 30 h
- Anchoring, Piling and Slurry Wall Technology lecture/exercise: 30 h
- field trips: 10 h

independent study:

- preparation and follow-up lecture/exercises Ground Improvement, Grouting and Soil Freezing: 25 h
- examination preparation Ground Improvement, Grouting and Soil Freezing (partial exam): 30 h
- preparation and follow-up lecture/exercises Anchoring, Piling and Slurry Wall Technology: 25 h
- examination preparation Anchoring, Piling and Slurry Wall Technology (partial exam): 30 h

total: 180 h

Recommendation
none
Literature

[1] Triantafyllidis, Th. (1990), Planung und Bauausführung im Spezialtiefbau, Teil 1, Ernst & S.
Module: Environmental Geotechnics (bauiM5S09-UMGEOTEC) [M-BGU-100079]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Subject-Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
- T-BGU-100084 Landfills 3 CR Bieberstein
- T-BGU-100089 Brownfield Sites - Investigation, Evaluation, Rehabilitation 3 CR Bieberstein

Competence Certificate
- 'Teilleistung' T-BGU-100084 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-100089 with oral examination according to § 4 Par. 2 No. 2

Details about the learning control see at the ‘Teilleistung’

Prerequisites
none

Competence Goal
The students can describe the legal guidelines regarding the disposal of wastes and the permitted threshold value for brownfields. They can outline the geotechnical concerns in the construction of landfill sites depending on the particular landfill classification, landfill elements, their relevant requirements and necessary certifications. They are able to interlink interdisciplinarily the chemical, mineralogical, biological, hydraulic and geotechnical aspects dealing with brownfields. They can choose reasonably between the relevant remediation technologies and assess their limits of applications and risks.

Content
The module covers geotechnical techniques in dealing with waste and brownfields. The environmental engineering, scientific and legal basics are discussed. Working steps of project planning, building materials, ways of construction and proofs are presented. Techniques for burning and immobilisation are explained as well as different microbiological, electrokinetic, hydraulic and pneumatic soil remediation methods.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Landfills lecture/exercise: 30 h
- Brownfield Sites - Investigation, Evaluation, Rehabilitation lecture: 30 h
- Excursion: 10 h

independent study:
- preparation and follow-up lecture/exercises Landfills: 25 h
- examination preparation Landfills (partial exam): 30 h
- preparation and follow-up lectures Brownfield Sites - Investigation, Evaluation, Rehabilitation: 25 h
- examination preparation Brownfield Sites - Investigation, Evaluation, Rehabilitation (partial exam): 30 h

total: 180 h

Recommendation
none

Literature
DGGT, GDA-Empfehlungen – Geotechnik der Deponien und Altlasten, Ernst und Sohn, Berlin
Drescher (1997), Deponiebau, Ernst und Sohn, Berlin
Reiersloh, D und Reinhard, M. (2010): Altlastenratgeber für die Praxis, Vulkan-V. Essen
Module: Coupled Geomechanic Processes (bauiM5S10-GEKOPPRO) [M-BGU-100077]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Subject-Specific Supplements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election notes
one of the courses in the field of Geothermics has been selected

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111058</td>
<td>Special Issues in Rock Mechanics</td>
<td>3 CR</td>
<td>Stutz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives (Election: 1 item)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111924</td>
<td>Wildcard Transport of Heat and Fluids</td>
<td>3 CR</td>
<td>N.N.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-108017</td>
<td>Applied Geothermics</td>
<td>4 CR</td>
<td>Kohl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- 'Teilleistung' T-BGU-111058 (compulsory) with examination of other type according to § 4 Par. 2 No. 3 according to the selected course:
- 'Teilleistung' T-BGU-111924 (compulsory elective 1) with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-108017 (compulsory elective 2) with written examination according to § 4 Par. 2 No. 1
details about the learning controls see at the respective 'Teilleistung'

Prerequisites
none

Competence Goal
The students can explain supplementary knowledge about strength and deformation properties of rocks as well as of rock testing in-situ and in laboratory. They recognize and evaluate the basic physical and chemical alteration parameters of geomaterials. They are able to describe the involved hydromechanical and thermomechanical processes and to express mathematically their interdependence with mechanical properties.

The students obtain knowledge in the field of geothermics and are able to integrate relevant physical processes into the subject field. They are able to apply methods for geothermal subsurface investigations and to make calculations with the obtained data.

The students develop shallow and deep geothermal projects with cost estimates. They are able to explicate examples and case studies in theory and practice.
Content
Special Issues in Rock Mechanics:
The module takes into account unconsolidated and hard rock as multiphase systems, in which mechanical processes take place coupled with hydraulic, chemical, biological and thermal processes and their material behavior being therefore typically time-dependent. Phenomena of swelling, shrinking, creeping, fracture hydraulics and rock dynamics are considered.

Transport of Heat and Fluids:
- heat budget of the Earth (influence of the sun, humans, stored heat, heat production)
- heat transport in rocks (phonons, photons, electrons, advective heat transport)
- physical understanding of underlying mechanisms and processes
- introduction into Geothermics, relations and boundaries to other related disciplines
- energy conservation, thermal and petrophysical properties of rocks, temperature field of the earth, influence of topography and climate on temperature distribution, Fourier law, stationary/instationary heat conduction, heat transport in continental and oceanic crust, advection by flow (Darcy law), Kelvin problem, Gauss error function
- introduction into methods and applications in geothermics: Bullard plot interpretation, measurement, Bottom Hole Temperature data
- introduction into geophysical geodynamics

Geothermische Nutzung:
- introduction into geothermal utilization
- hydrothermal and enhanced (or engineered) geothermal systems (EGS)
- stimulation methods
- geothermal exploration
- thermodynamics and power plant processes
- shallow geothermics
- examples

Module grade calculation
Grade of the module is average grade of the compulsory partial exam and the selected compulsory elective partial exam.

Annotation
As from summer term 2022 the possible selections in Geothermics are updated.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- Special Issues in Rock Mechanics lecture/exercise: 30 h
- Transport of Heat and Fluids lecture (compulsory elective 1): 30 h
- Application and Industrial Use / Geothermics 2 lecture/exercise (compulsory elective 2): 30 h

independent study:
- preparation and follow-up lecture/exercises Special Issues in Rock Mechanics: 30 h
- preparation of presentation and written report about Special Issues in Rock Mechanics (partial examination, compulsory): 30 h
- preparation and follow-up lectures Transport of Heat and Fluids: 30 h
- examination preparation Transport of Heat and Fluids (partial examination, compulsory elective 1): 30 h
- preparation and follow-up lecture/exercises Application and Industrial Use / Geothermics 2: 30 h
- examination preparation Application and Industrial Use / Geothermics 2 (partial examination, compulsory elective 2): 30 h

total: 180 h

Recommendation
module Rock Engineering and Tunneling [bauiM5P3-FMTUB]

Literature
5.128 Module: Module Master Thesis (bauiMSC-THESIS) [M-BGU-104996]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Master Thesis (Usage from 7/1/2019)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-110135 | Master Thesis | 30 CR | Vortisch |

Competence Certificate
thesis and final presentation according to § 14 ER/SPO

Prerequisites
Modules in extent of minimum 42 CP has to be passed in order to be admitted to the Master Thesis according to ER/SPO § 14 Par. 1. Results obtained in the module Interdisciplinary Qualifications [bauiMW0-UEQUAL] cannot be counted for this purpose.

Competence Goal
The student is able to investigate independently a complex problem within a particular research field of his choice in limited time, following scientific methods. He can search autonomously for literature, can find own approaches, can evaluate his results and can classify them according to the state of the art. He is further able to present clearly the essential matter and results in his master thesis and in a comprehensive presentation.

Content
The Master Thesis is an independent written report and comprises the theoretical or experimental work on a complex problem within a particular field of civil engineering with scientific methods. The topic of the master thesis derives from the students choice of a particular field. The student and can make proposals for the topic.

Module grade calculation
The grade of the module results from the evaluation of the Master Thesis and the final presentation.

Annotation
Information about the procedure regarding admission and registration of the Master Thesis see chap. 2.9.

Workload
- working on thesis project: 720 h
- thesis writing: 150 h.
- preparation of presentation: 30 h

total: 900 h

Recommendation
All technical skills and soft skills required for working on the selected topic and the preparation of the thesis should be attained.
Module: Interdisciplinary Qualifications (bauiMW0-UEQUAL) [M-BGU-103927]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: University
Part of: Interdisciplinary Qualifications

Credits: 6
Grading scale: pass/fail
Recurrence: Each term
Duration: 2 terms
Language: German
Level: 4
Version: 2

Election notes
Courses accepted generally by the Examination Committee are available directly as selection option in the module.
For self assignment of taken interdisciplinary qualifications of HoC, ZAK or SpZ the 'Teilleistungen' with the title "Self Assignment HoC-ZAK-SpZ ..." have to be selected according to the grading scale, not graded or graded.

<table>
<thead>
<tr>
<th>Interdisciplinary Qualifications (Election: at least 6 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106765 Introduction to Matlab</td>
<td>3 CR Ehret</td>
</tr>
<tr>
<td>T-BGU-111596 Self Assignment HoC-ZAK-SpZ 1 not graded</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-BGU-111597 Self Assignment HoC-ZAK-SpZ 2 not graded</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-BGU-111598 Self Assignment HoC-ZAK-SpZ 3 not graded</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-BGU-111599 Self Assignment HoC-ZAK-SpZ 4 graded</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-BGU-111600 Self Assignment HoC-ZAK-SpZ 5 graded</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-BGU-111601 Self Assignment HoC-ZAK-SpZ 6 graded</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
according to taken courses

Prerequisites
none

Competence Goal
Learning outcomes can be divided into three main complementary categories:
1. Contextual Knowledge
 - Students are aware of the cultural context of their position and are in a position to consider the views and interests of others (beyond the boundaries of subject, culture, and language).
 - They have enhanced their ability to participate properly and appropriately in academic or public discussions.

2. Practical Focus
 - Students have gained an insight into the routines of professional life.
 - They have further developed their capability to learn.
 - They have improved their scope of action by extending their knowledge of foreign languages.
 - They are able to relate their field of experience to basic aspects of business administration and law.

3. Basic Competences
 - The students autonomously acquire new knowledge in a planned, specific, and methodologically founded manner and use it for solving tasks and problems.
 - They can evaluate own work.
 - They possess efficient work techniques, can set priorities, take decisions, and assume responsibility.

Content
With the key competences, the House of Competence (HoC) and the Centre for Cultural and General Studies (ZAK) offer a wide range of courses, which are bundled thematically for better orientation. The contents are explained in detail in the descriptions of the courses on the internet pages of HoC (https://studium.hoc.kit.edu/index.php/lehangebot-gesamtuebersicht/; in German) and ZAK (https://www.zak.kit.edu/english/general_studies.php). Further, courses of the General Studies of ZAK or language courses of the 'Sprachenzentrums' (https://www.spz.kit.edu/index.php; in German) can be taken as Interdisciplinary Qualifications.

Module grade calculation
not graded
Annotation
In exceptional cases the Examination Committee can accept or recognize further suitable courses as Interdisciplinary Qualifications which are not listed in the mentioned offers of HoC, ZAK and ‘Sprachenzentrum’ or already included in the module. Further information about the Interdisciplinary Qualifications (selection, registration, etc.) see Sect. 2.4.

In agreement with the examiner the passing of the respective course can be marked. This mark is not considered for the grade of the module as the module is not graded.

For self assignment of the taken exams of HoC, ZAK and SpZ the respective ‘Teilleistung' has to be selected. Title and CP of the taken exam are taken over by the assignment.

Workload
according to taken courses; see course description of HoC, lecture descriptions of ZAK, descriptions of language courses

Recommendation
none
5.130 Module: Further Examinations (bauiMZL) [M-BGU-103951]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Additional Examinations

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional Examinations (Election: at most 30 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111044</td>
<td>Practical Exercises Dynamics of Structures</td>
<td>2 CR</td>
<td>Betsch</td>
</tr>
</tbody>
</table>
6 Courses

6.1 Course: Advanced Fluid Mechanics [T-BGU-106612]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103359 - Advanced Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6221701</th>
<th>Advanced Fluid Mechanics</th>
<th>4 SWS</th>
<th>Lecture / Practice (/</th>
<th>Eiff</th>
</tr>
</thead>
</table>

Legend: 🔄 Online, 🔄 Blended (On-Site/Online), ☑ On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.2 Course: Advanced Studies in Construction Engineering [T-BGU-108003]

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6241903</td>
<td>Tunnelbau und Sprengtechnik</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Haghsheno, Scheuble, Matz</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6241904</td>
<td>Tiefbau</td>
<td>1 SWS</td>
<td>Lecture</td>
<td>Haghsheno, Schneider</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6241905</td>
<td>Erdbau</td>
<td>1 SWS</td>
<td>Lecture / 🧩</td>
<td>Haghsheno, Schwarzweller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.3 Course: Agile Project Management in Facility and Real Estate Management [T-BGU-111906]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105920 - Agile Project Management in Facility and Real Estate Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Recommendation</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6242805</td>
<td>4 SWS</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

Competence Certificate

- Project:
 - Report, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites

- none

Recommendation

- none

Annotation

- none
6.4 Course: Analysis and Evolution of Mobility [T-BGU-101004]

Responsible: PD Dr.-Ing. Martin Kagerbauer

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100583 - Analysis and Evolution of Mobility

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6232901</td>
<td>Empirische Daten im Verkehrswesen</td>
<td>Lecture / Practice</td>
<td>2</td>
<td>Kagerbauer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6232811</td>
<td>Mobilitätsservices und neue Formen der Mobilität</td>
<td>Lecture / Practice</td>
<td>2</td>
<td>Kagerbauer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.5 Course: Anchoring, Piling and Slurry Wall Technology [T-BGU-100079]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100078 - Special Underground Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6251822</th>
<th>Anchoring, Piling and Slurry Wall Technology</th>
<th>2 SWS</th>
<th>Lecture / Practice</th>
<th>Kudella</th>
</tr>
</thead>
</table>

Legend: 📧 Online, 🟫 Blended (On-Site/Online), ⚖ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.6 Course: Applied Building Physics [T-BGU-100039]

Responsible: Dr.-Ing. Engin Kotan
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103950 - Building Physics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6211909 | Angewandte Bauphysik | 2 SWS | Lecture / 🗣 | Kotan, Vogel, Dehn |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.7 Course: Applied Dynamics of Structures [T-BGU-100021]

Responsible: Prof. Dr.-Ing. Alexander Stark
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100038 - Applied Dynamics of Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Mode</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6211805</td>
<td>Praktische Baudynamik</td>
<td>1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Stark, Kohm</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6211806</td>
<td>Übungen zu Praktische</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Kohm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baudynamik</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕹 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

none

Annotation

none

Responsible: PD Dr.-Ing. Stephan Fuchs
Dr.-Ing. Stephan Hilgert

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-104922 - Freshwater Ecology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6223813 | Applied Ecology and Water Quality | 2 SWS | Seminar / 🧩 | Hilgert, Fuchs |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate

term paper, appr. 8-15 pages, and
presentation, appr. 15 min.

Prerequisites

none

Recommendation

none

Annotation
The number of participants in the course is limited to 12 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geocology and further study programs. The attendance at the first meeting is mandatory. In case of absence the place will be assigned to a person on the waiting list.
6.9 Course: Applied Geotechnics [T-BGU-100073]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100072 - Applied Geotechnics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6251810 | Foundations and Retaining Structures | 2 SWS | Lecture / Practice (/) Stutz |
| ST 2022 | 6251812 | Special Foundation Engineering and Design | 2 SWS | Lecture / Practice (/) Stutz |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.10 Course: Applied Geothermics [T-BGU-108017]

Responsible: Prof. Dr. Thomas Kohl

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100077 - Coupled Geomechanic Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6310425 | Application and Industrial Use / Geothermics 2 | 2 SWS | Lecture / Practice (/ Kohl |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of a written exam (45min) according to §4 (2) of the examination regulations.

Prerequisites

none
6.11 Course: Basics of Finite Elements [T-BGU-100047]

- **Responsible:** Prof. Dr.-Ing. Peter Betsch
- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
- **Part of:** M-BGU-100052 - Basics of Finite Elements

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6215901</td>
<td>Grundlagen Finite Elemente</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Betsch</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6215902</td>
<td>Übungen zu Grundlagen Finite Elemente</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6 COURSES

Course: Basics of Prestressed Concrete [T-BGU-100019]

6.12 Course: Basics of Prestressed Concrete [T-BGU-100019]

Responsible: Prof. Dr.-Ing. Alexander Stark
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100036 - Basics of Prestressed Concrete

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6211803 | Grundlagen des Spannbetons | 2 SWS | Lecture / 🗣 | Stark |
| ST 2022 | 6211804 | Übungen zu Grundlagen des Spannbetons | 2 SWS | Practice / 🗣 | Mitarbeiter/innen |

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.13 Course: Bracing and Stability in Reinforced Concrete [T-BGU-100018]

Responsible: Prof. Dr.-Ing. Alexander Stark
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100003 - Bracing and Stability in Reinforced Concrete

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6211801 Aussteifung und Stabilität im Stahlbetonbau</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Stark</td>
<td></td>
</tr>
<tr>
<td>ST 2022 6211802 Übungen zu Aussteifung und Stabilität im Stahlbetonbau</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
one none

Recommendation
one none

Annotation
one none
6.14 Course: Brownfield Sites - Investigation, Evaluation, Rehabilitation [T-BGU-100089]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100079 - Environmental Geotechnics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Competence Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6251915</td>
<td>Brownfield Sites - Investigation, Evaluation, Rehabilitation</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
<td>oral exam, appr. 20 min.</td>
<td>Bieberstein, Eiche, Würdemann, Mohrlok</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.15 Course: Building and Environmental Aerodynamics [T-BGU-111060]

Responsible: Dr.-Ing. Christof-Bernhard Gromke

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105503 - Interaction Flow - Building Structure

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6221905 | Building and Environmental Aerodynamics | 2 SWS | Lecture / Practice (/ Gromke |

Legend: 🖥 Online, 💼 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.16 Course: Building Information Modeling (BIM) [T-BGU-108007]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103916 - Building Information Modeling (BIM)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6241812</th>
<th>Building Information Modeling</th>
<th>4 SWS</th>
<th>Lecture / Practice (/ Haghsheno</th>
</tr>
</thead>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✕ Cancelled

Competence Certificate
project report appr. 10 pages and presentation appr. 10 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.17 Course: Building Preservation in Steel Structures [T-BGU-110856]

Responsible: Prof. Dr.-Ing. Thomas Ummenhofer

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-100043 - Building Preservation of Steel and Timber Structures
- M-BGU-105373 - Building Preservation and Innovations in Metal and Lightweight Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6212909</td>
<td>Bauwerkserhaltung im Stahlbau</td>
<td>2 SWS</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, 60 min.

Prerequisites

None

Recommendation

None

Annotation

None
6.18 Course: Building Preservation in Timber Structures [T-BGU-110857]

Responsible: Dr.-Ing. Matthias Frese
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-BGU-100043 - Building Preservation of Steel and Timber Structures
- M-BGU-105374 - Building Preservation and Innovations in Timber Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>6213903</th>
<th>Bauwerkserhaltung im Holzbau</th>
<th>2 SWS</th>
<th>Lecture / Practice (/ Frese, Mitarbeiter/innen)</th>
</tr>
</thead>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate

written exam, 60 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.19 Course: Building Preservation of Concrete and Masonry Constructions [T-BGU-100038]

Responsible: Dr.-Ing. Engin Kotan
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100058 - Building Preservation of Concrete and Masonry Constructions

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6211811</td>
<td>Protection, Rehabilitation and Reinforcement of Concrete and Masonry Constructions</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Kotan</td>
<td></td>
</tr>
<tr>
<td>ST 2022 6211812</td>
<td>Exercises to Protection, Rehabilitation and Reinforcement of Concrete and Masonry Constructions</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Kotan</td>
<td></td>
</tr>
<tr>
<td>ST 2022 6211813</td>
<td>Building Analysis</td>
<td>1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Kotan, Vogel</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none

Legend: 🖥 Online, ☢️ Blended (On-Site/Online), 🗣️ On-Site, ☓ Cancelled
6.20 Course: Building Technology [T-BGU-100040]

Responsible: PD Dr.-Ing. Stephan Wirth

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103950 - Building Physics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Competence Certificate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6211910 Gebäudetechnik</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Wirth</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, 🗡️ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.21 Course: City Transport Facilities [T-BGU-100083]

Responsible: Prof. Dr.-Ing. Ralf Roos
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100026 - City Transport Facilities

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Modeled Conditions</th>
<th>Recommendation</th>
<th>Annotation</th>
</tr>
</thead>
</table>
| WT 21/22 | 4 SWS | Exercises and student research project City Transport Facilities has to be passed. | The following conditions have to be fulfilled:
1. The course T-BGU-109912 - Exercises and Student Research Project City Transport Facilities must have been passed. | none | none |
| 6233909 | Lecture / Practice (/ | Roos, Zimmermann | |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗝 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
Exercises and student research project City Transport Facilities has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-109912 - Exercises and Student Research Project City Transport Facilities must have been passed.
6.22 Course: Computational Analysis of Structures [T-BGU-100031]

Responsible: Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100047 - Computational Analysis of Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6214801 | Computational Analysis of Structures | 2 SWS | Lecture / 🗣 | Wagner |
| ST 2022 | 6214802 | Exercises to Computational Analysis of Structures | 2 SWS | Practice / 🗣 | Geiger |

Legend: 🖥 Online, 🢱 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, appr. 30 min.

Prerequisites

Student research project "Computational Analysis of Structures" has to be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-100174 - Student Research Project 'Computational Analysis of Structures' must have been passed.

Recommendation

none

Annotation

none
6.23 Course: Computational Structural Dynamics [T-BGU-100999]

Responsible: Prof. Dr.-Ing. Peter Betsch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100579 - Numerical Structural Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6215810 | Numerische Strukturodynamik | 4 SWS | Lecture / Practice (/) | Betsch |

Legend: 📱 Online, 🧩 Blended (On-Site/Online), ⚡ On-Site, ⚪ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.24 Course: Concrete Construction Technology [T-BGU-100036]

Responsible: Prof. Dr.-Ing. Frank Dehn

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100056 - Concrete Construction Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6211914</td>
<td>Betontechnologie</td>
<td>3</td>
<td>Lecture / Practice</td>
<td>Dehn, Kvitsel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6211915</td>
<td>Verformungs- und Bruchprozesse</td>
<td>1</td>
<td>Lecture</td>
<td>Kotan, Dehn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ❌ Cancelled

Competence Certificate
oral exam, approx. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.25 Course: Construction of Steel and Composite Bridges [T-BGU-100024]

Responsible: Prof. Dr.-Ing. Thomas Ummenhofer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100040 - Construction of Steel and Composite Bridges

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6212805</td>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022 6212806</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Practice / 🗂</td>
<td>Ummenhofer, Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, 🗑 Cancelled

Competence Certificate
oral exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.26 Course: Contact Mechanics [T-BGU-109947]

Responsible: Dr.-Ing. Marlon Franke

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-104916 - Contact Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Final Lecturer</th>
<th>Final Practical Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6215909</td>
<td></td>
<td>Contact Mechanics</td>
<td>2</td>
<td></td>
<td>Konyukhov, Franke</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 6215910</td>
<td></td>
<td>Exercises Contact Mechanic</td>
<td>2</td>
<td></td>
<td>Konyukhov, Franke</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.27 Course: Continuum Mechanics [T-BGU-106196]

Responsible: Dr.-Ing. Marlon Franke
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-BGU-100064 - Continuum Mechanics of Heterogeneous Solids
- M-BGU-100070 - Basics of Numeric Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6215702 Kontinuumsmechanik</td>
<td>2 SWS</td>
<td>Lecture / Franke</td>
<td>Each term</td>
<td>Online, Blended (On-Site/Online), On-Site, Cancelled</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.28 Course: Decommissioning of Nuclear Facilities [T-BGU-100627]

Responsible: Prof. Dr.-Ing. Sascha Gentes
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100345 - Decommissioning of Nuclear Facilities

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Weekly Shifts (SWS)</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6243901</td>
<td>Demontage und Dekontamination von kerntechnischen Anlagen</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Gentes, Mitarbeiter/innen</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6243903</td>
<td>Neuuentwicklungen und Optimierungen in der Maschinentechnik der Demontage und des Rückbaus</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Gentes, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
keine

Recommendation
one

Annotation
one
6.29 Course: Design and Construction in Metal and Lightweight Structures [T-BGU-110852]

Responsible: Prof. Dr.-Ing. Thomas Ummenhofer

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105370 - Design and Construction in Metal and Lightweight Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6212913 | Entwerfen und Konstruieren im Metall- und Leichtbau | 4 SWS | Lecture / Practice (| Ummenhofer |

Competence Certificate

structure and construction proposal, report appr. 20 pages, colloquium appr. 30 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.30 Course: Design and Construction of Components in Reinforced Concrete [T-BGU-100015]

Responsible: Prof. Dr.-Ing. Alexander Stark
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100033 - Design and Construction of Components in Reinforced Concrete

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title of Course</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6211701</td>
<td>Bemessung und Konstruktion von Bauteilen im Stahlbeton</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Müller</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6211702</td>
<td>Übungen zu Bemessung und Konstruktion von Bauteilen im Stahlbeton</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Müller</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 90 min.

Prerequisites
one

Recommendation
one

Annotation
one
6.31 Course: Design Exercise Hydraulic Structures [T-BGU-111929]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103376 - Hydraulic Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6222703 | Design of Hydraulic Structures | 2 SWS | Lecture / Practice | Seidel |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate

1 design exercise, report about 10 pages

Prerequisites

none

Recommendation

none

Annotation

none
6.32 Course: Design Exercise River Engineering [T-BGU-111928]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103376 - Hydraulic Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>1</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Expansion</th>
<th>1 terms</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Events

| ST 2022 | 6222701 | River Engineering | 2 SWS | Lecture / Practice (/ | Rodrigues Pereira da Franca |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

1 design exercise, report about 10 pages

Prerequisites

none

Recommendation

none

Annotation

none
6.33 Course: Digital Engineering and Construction [T-BGU-111695]

Responsible: Jun.-Prof. Dr. Reza Maalek
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105830 - Digital Engineering and Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6244901 | Digital Engineering and Construction | 4 SWS | Lecture / Practice (Maalek) |

Competence Certificate

4 weekly assignments, term paper approx. 10 pages, presentation approx. 15-20 min.

Prerequisites

none

Recommendation

none

Annotation

none
6 COURSES Course: Digital Planning and Building Information Modeling [T-BGU-110382]

6.34 Course: Digital Planning and Building Information Modeling [T-BGU-110382]

Responsible: Tim Zinke
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105135 - Digital Planning and Building Information Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Schedule</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6212912</td>
<td>Digital Planning and Building Information Modeling</td>
<td>4 SWS</td>
<td>Lecture / Practice (/ Zinke)</td>
<td>Online, Blended (On-Site/Online), On-Site, Cancelled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

preparation of BIM flat pattern plan and report, approx. 20 pages, with presentation, approx. 10 min.

Prerequisites

none

Recommendation

none

Annotation

none

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
6.35 Course: Digital Technologies in Field Information Modeling [T-BGU-111276]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Jun.-Prof. Dr. Reza Maalek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Civil Engineering, Geo- and Environmental Sciences</td>
</tr>
<tr>
<td>Part of</td>
<td>M-BGU-105638 - Digital Technologies in Field Information Modeling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6244801 | Digital Technologies in Field Information Modeling | 4 SWS | Lecture / Practice (/ | Maalek |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⌚ On-Site, ❌ Cancelled

Competence Certificate

4 weekly assignments, term paper approx. 10 pages, presentation approx. 15 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.36 Course: Digitalization in Facility and Real Estate Management [T-BGU-108941]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-104348 - Digitalization in Facility and Real Estate Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6242907 | Digitization in Facility- and Real Estate Management | 4 SWS | Lecture / Practice (Lennerts, Mitarbeiter/innen) |

Competence Certificate

- project work incl. report, appr. 15 pages, and presentation/colloquium, appr. 15 min

Prerequisites

- none

Recommendation

- none

Annotation

- none
6.37 Course: Durability and Service Life Design [T-BGU-100037]

Responsible: Dr.-Ing. Michael Vogel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100057 - Durability and Service Life Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6211907</td>
<td>Korrosive Prozesse und Lebensdauer</td>
<td>3 SWS</td>
<td>Lecture / Practice (/) Vogel, Dehn</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6211908</td>
<td>Analytische Verfahren</td>
<td>1 SWS</td>
<td>Lecture / Vogel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗼 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.38 Course: Dynamics of Structures [T-BGU-100077]

Responsible: Prof. Dr.-Ing. Peter Betsch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100035 - Surface Structures and Dynamics of Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6215701</td>
<td>2 SWS</td>
<td>Lecture / 🗣 Betsch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.39 Course: Earthworks and Foundation Engineering [T-BGU-100068]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100068 - Earthworks and Foundation Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6251701</td>
<td>Foundation Types</td>
<td>2</td>
<td>Lecture / Practice (/ 📚) Knittel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6251703</td>
<td>Basics in Earthworks and Embankment Dams</td>
<td>2</td>
<td>Lecture / Practice (/ 📚) Bieberstein</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

preparation of the student research project for examination preparation

Annotation

none
6.40 Course: Environmental Communication [T-BGU-101676]

Responsible: Dr. Charlotte Kämpf
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101108 - Environmental Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6224905</td>
<td>Umweltkommunikation / Environmental Communication</td>
<td>2</td>
<td>Seminar</td>
<td>Kämpf</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>6224905</td>
<td>Environmental Communication</td>
<td>2</td>
<td>Seminar / 🤝</td>
<td>Kämpf</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🌏 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Presentation, appr. 15 min., manuscript, appr. 6000 words, and Poster DIN-A3

Prerequisites
The accomplishment 'Examination Prerequisite Environmental Communication' (T-BGU-106620) has to be passend.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106620 - Examination Prerequisite Environmental Communication must have been passed.

Recommendation
none

Annotation
none
6.41 Course: Environmental Fluid Mechanics [T-BGU-106767]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103383 - Environmental Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6221909 | Environmental Fluid Mechanics | 4 SWS | Lecture / Practice | Eiff |

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🔴 On-Site, ⌚ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.42 Course: Environmentally-Friendly Recycling and Disassembly of Buildings [T-BGU-100146]

Responsible: Prof. Dr.-Ing. Sascha Gentes
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100110 - Environmentally-friendly Recycling and Disassembly of Buildings

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6243801</th>
<th>Projektstudien</th>
<th>2 SWS</th>
<th>Lecture / Practice (/)</th>
<th>Haupenthal, Gentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6243803</td>
<td>Verfahrenstechniken der Demontage</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Gentes</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ⌚ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.43 Course: Equipment and Special Construction Techniques in Building Practice [T-BGU-108009]

Responsible: Prof. Dr.-Ing. Sascha Gentes
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103918 - Equipment and Special Construction Techniques in Building Practice

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6243905</td>
<td>Geräte und spezielle Verfahren in der Baupraxis II</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Gentes, Schneider</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6241815</td>
<td>Geräte und spezielle Verfahren in der Baupraxis I</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Gentes, Schneider</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.44 Course: Examination Prerequisite Environmental Communication [T-BGU-106620]

Responsible: Dr. Charlotte Kämpf

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101108 - Environmental Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6224905</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Kämpf</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>6224905</td>
<td>2 SWS</td>
<td>Seminar / Online</td>
<td>Kämpf</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔬 On-Site, ✗ Cancelled

Competence Certificate

2 literature annotations, appr. 150 words each, and short presentation, appr. 10 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.45 Course: Exercises and Student Research Project City Transport Facilities [T-BGU-109912]

Responsible: Prof. Dr.-Ing. Ralf Roos

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100026 - City Transport Facilities

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6233909</td>
<td>Innerstädtische Verkehrsanlagen</td>
<td>4 SWS</td>
<td>Lecture / Practice ()</td>
<td>Roos, Zimmermann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚡ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
1 report approx. 5 pages and 3 planning documents

Prerequisites
none

Recommendation
none

Annotation
none
6 COURSES

Course: Exercises Space and Infrastructure [T-BGU-111278]

6.46 Course: Exercises Space and Infrastructure [T-BGU-111278]

Responsible: PD Dr.-Ing. Martin Kagerbauer
Dr. Sina Keller

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100014 - Space and Infrastructure

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6072201 Grundlagen Geographischer Informationssysteme für die Modellierung und Planung</td>
<td>2</td>
<td>Lecture</td>
<td>Keller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6072202 Grundlagen Geographischer Informationssysteme für die Modellierung und Planung, Übung</td>
<td>2</td>
<td>Practice</td>
<td>Keller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6231805 Erschließung, Ver- und Entsorgungsplanung</td>
<td>2</td>
<td>Lecture / Practice</td>
<td>Kagerbauer</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
9 of 10 exercises about GIS;
1 plan submission with 1-2 pages written explanation

Prerequisites
none

Recommendation
none

Annotation
new as from summer term 2021
6.47 Course: Experimental Hydraulics II [T-BGU-106773]

Responsibility: Dr.-Ing. Frank Seidel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103388 - Experimental Hydraulics and Measuring Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6222907 Experimental Hydraulics II</td>
<td>2 SWS</td>
<td>Lecture / Practice</td>
<td>Seidel</td>
</tr>
</tbody>
</table>

Competence Certificate
term paper, appr. 10 pages

Prerequisites
none

Recommendation
none

Annotation
none
6.48 Course: Experiments in Fluid Mechanics [T-BGU-106760]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103377 - Experiments in Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6221802</td>
<td>Experiments in Fluid Mechanics</td>
<td>4 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Eiff, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗞 On-Site, ☐ Cancelled

Competence Certificate
laboratory reports with analyses of the experiments in small teams, each appr. 10 pages including figures and tables, and oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.49 Course: Facility Management [T-BGU-111908]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105922 - Facility Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
one

Recommendation
one

Annotation
one
6.50 Course: Facility Management in Hospitals and Hospital Management [T-BGU-109291]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100347 - Facility Management in Hospitals and Hospital Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6242905</td>
<td>Facility Management in Hospitals</td>
<td>3 SWS</td>
<td>Lecture / Practice (Lennerts, Mitarbeiter/innen)</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6242906</td>
<td>Facility Management in Hospitals</td>
<td>1 SWS</td>
<td>Lecture (Lennerts, Mitarbeiter/innen)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
term paper appr. 10 pages, with final presentation appr. 10 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.51 Course: FE-Applications in Practical Engineering [T-BGU-100032]

Responsible: Prof. Dr.-Ing. Steffen Freitag
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100048 - FE-Applications in Practical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Number</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6214803</td>
<td>FE-Applications in Practical Engineering</td>
<td>2 SWS</td>
<td>Freitag, Panther</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6214804</td>
<td>Übungen zu FE-Anwendung in der Baupraxis</td>
<td>2 SWS</td>
<td>Panther</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.52 Course: Field Training Water Quality [T-BGU-109957]

Responsible: PD Dr.-Ing. Stephan Fuchs
Dr.-Ing. Stephan Hilgert

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-104922 - Freshwater Ecology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6223814</th>
<th>Field Training Water Quality</th>
<th>2 SWS</th>
<th>Practice /</th>
<th>Hilgert, Fuchs</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate
report on field training, appr. 8-15 pages

Prerequisites
The 'Teilleistung' Applied Ecology and Water Quality (T-BGU-109956, seminar paper with presentation) has to be begun, i.e. at least the registration has to be made.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-109956 - Applied Ecology and Water Quality must have been started.

Recommendation
none

Annotation
The number of participants in the course is limited to 12 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geocology and further study programs. The attendance at the first meeting is mandatory. In case of absence the place will be assigned to a person on the waiting list.
6.53 Course: Finite Elements in Solid Mechanics [T-BGU-100998]

Responsible: Prof. Dr.-Ing. Peter Betsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100578 - Finite Elements in Solid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6215808 | Finite Elemente in der Festkörpermechanik | 2 SWS | Lecture / 🗣️ | Betsch |
| ST 2022 | 6215809 | Übungen zu Finite Elemente in der Festkörpermechanik | 2 SWS | Practice / 🗣️ | Wasmer |

Legend: 🖥 Online, 🪗 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Flow Measurement Techniques [T-BGU-110411]

Responsible: Dr.-Ing. Christof-Bernhard Gromke
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103388 - Experimental Hydraulics and Measuring Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6221907</td>
<td>Flow Measurement Techniques</td>
<td>2 SWS</td>
<td>Lecture / Practice / Gromke</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105361 - Fluid Mechanics of Turbulent Flows

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
</tr>
</tbody>
</table>

Events

ST 2022 6221806 Fluid Mechanics of Turbulent Flows 4 SWS Lecture / Practice (/ Uhlmann

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⚠ Cancelled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.56 Course: Fracture and Damage Mechanics [T-BGU-100087]

Responsible: Prof. Dr.-Ing. Thomas Seelig

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100053 - Fracture and Damage Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>6215903</th>
<th>Bruch- und Schädigungsmechanik</th>
<th>Lecture / Practice</th>
<th>Seelig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 SWS</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.57 Course: Freight Transport [T-BGU-106611]

Responsible: Bastian Chlond

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100020 - Intermodality in Freight, Long-Distance and Air Transport

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6232809</th>
<th>Güterverkehr</th>
<th>2 SWS</th>
<th>Lecture / Practice (/)</th>
<th>Chlond</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ☢ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

written exam, 60 min.

Prerequisites

none

Recommendation

none

Annotation

none
Course: Geostatistics [T-BGU-106605]

6.58

Responsible: Prof. Dr.-Ing. Erwin Zehe

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103762 - Analysis of Spatial Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6224805</th>
<th>Geostatistics</th>
<th>4 SWS</th>
<th>Lecture / Practice</th>
<th>Zehe, Mälicke, Wienhöfer</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗪 On-Site, 🗿 Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.59 Course: Geotechnical Testing and Measuring Technology [T-BGU-100075]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100076 - Geotechnical Testing and Measuring Technology

Type
Oral examination

Credits
6

Grading scale
Grade to a third

Recurrence
Each term

Version
1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6251909</td>
<td>Rock Testing</td>
<td>1</td>
<td>Lecture / 📋</td>
<td>Schneider</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6251910</td>
<td>Testing in Dam and Wastefill Engineering</td>
<td>1</td>
<td>Lecture / 📋</td>
<td>Bieberstein</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6251911</td>
<td>Geotechnical Measuring Technology</td>
<td>2</td>
<td>Lecture / Practice (/ 📋</td>
<td>Huber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎨 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.60 Course: Glass, Plastic and Cable Structures [T-BGU-100025]

Responsible: Dr.-Ing. Daniel Ruff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100041 - Glass, Plastic and Cable Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Lecture</th>
<th>Practice</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6212905</td>
<td>Glas-, Kunststoff- und Seiltragwerke</td>
<td>Lecture</td>
<td>Ruff</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6212906</td>
<td>Übungen zu Glas-, Kunststoff- und Seiltragwerke</td>
<td>Practice</td>
<td>Ruff</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.61 Course: Ground Improvement, Grouting and Soil Freezing [T-BGU-100080]

Responsible: Tobias Riegger
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100078 - Special Underground Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6251820 | Ground Improvement, Grouting and Soil Freezing | 2 SWS | Lecture / Practice (/) |

Legend: 🗣 Online, 🧩 Blended (On-Site/Online), 🗞 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.62 Course: Ground Investigation [T-BGU-100072]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100071 - Ground Investigation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6251808</th>
<th>Soil Mechanical Laboratory Exercises</th>
<th>2 SWS</th>
<th>Practice / 🗣️</th>
<th>Knittel, Reith</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6251809</td>
<td>Geomechanical Field Exercise</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Knittel, Reith</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.63 Course: Ground Water and Earth Dams [T-BGU-100091]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100073 - Ground Water and Earth Dams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6251814</td>
<td>2</td>
<td>Lecture / Practice (/ 🗣️)</td>
<td>Each term</td>
<td>Geotechnical Ground Water Problems Bieberstein</td>
</tr>
<tr>
<td>ST 2022 6251816</td>
<td>2</td>
<td>Lecture / Practice (/ 🗣️)</td>
<td>Each term</td>
<td>Embankment Dams (Advanced) Bieberstein</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.64 Course: Groundwater Flow around Structures [T-BGU-106774]

Responsible: Ph.D. Luca Trevisan
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103389 - Hydraulic Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.65 Course: Groundwater Hydraulics [T-BGU-100624]

Responsible: Dr. Ulf Mohrlok

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100340 - Groundwater Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6221801 | Groundwater Hydraulics | 2 SWS | Lecture / Practice (/) | Mohrlok |

Legend: 🖥 Online, 🌐 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.66 Course: Group Exercise Project Integrated Planning [T-BGU-109916]

Responsible: Prof. Dr.-Ing. Ralf Roos
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100018 - Project Integrated Planning

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Expansion</td>
<td>1 terms</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Project</th>
<th>SWS</th>
<th>Type</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6230901</td>
<td>Project Integriertes Planen</td>
<td>4 SWS</td>
<td>Project (P / 🗣)</td>
<td>Roos, Zimmermann, Chlond</td>
</tr>
</tbody>
</table>

Competence Certificate

- integrated term paper of the whole group and 2 presentations of the result

Prerequisites

- none

Recommendation

- none

Annotation

- none
6.67 Course: Highway Design [T-BGU-100057]

Responsible: Prof. Dr.-Ing. Ralf Roos
Dr.-Ing. Matthias Zimmermann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100017 - Highway Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>6233901</th>
<th>DV-gestützter Straßenentwurf</th>
<th>2 SWS</th>
<th>Lecture / Practice (/</th>
<th>Zimmermann</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6233903</td>
<td>Projektstudie Außerortsstraße</td>
<td>2 SWS</td>
<td>Lecture / Practice (/</td>
<td>Zimmermann, Roos</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
Study project Design of a Rural Road hat to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-109917 - Study Project Design of a Rural Road must have been passed.

Recommendation
none

Annotation
none
6.68 Course: History of Urban Planning [T-BGU-108441]

Responsible: Prof. Dr. Joachim Vogt

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100013 - Urban Renewal

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6328016</td>
<td>Städtebau I: Städtebaugeschichte</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Vogt, Ross</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.69 Course: Hollow Section Structures [T-BGU-100086]

Responsible: Dr.-Ing. Stefan Herion

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100004 - Hollow Section Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6212903</td>
<td>2 SWS</td>
<td>Hohlprofilkonstruktionen</td>
<td>Lecture</td>
<td>Herion</td>
</tr>
<tr>
<td>WT 21/22 6212904</td>
<td>2 SWS</td>
<td>Übungen zu Hohlprofilkonstruktionen</td>
<td>Practice</td>
<td>Herion</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.70 Course: Homework 'Basics of Finite Elements' [T-BGU-109908]

Responsible: Prof. Dr.-Ing. Peter Betsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100052 - Basics of Finite Elements

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
<th>Co-organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6215901</td>
<td>Grundlagen Finite Elemente</td>
<td>2</td>
<td>Lecture</td>
<td>Betsch</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6215902</td>
<td>Übungen zu Grundlagen Finite Elemente</td>
<td>2</td>
<td>Practice</td>
<td>Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

processing of two exercise sheets

Prerequisites

none

Recommendation

none

Annotation

none
6.71 Course: Homework 'Introduction to Environmental Data Analysis and Statistical Learning' [T-BGU-109950]

Responsible: Dr.-Ing. Uwe Ehret
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-104880 - Introduction to Environmental Data Analysis and Statistical Learning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| VT 21/22 | 6224908 | Introduction to Environmental Data Analysis and Statistical Learning | 4 SWS | Lecture / Practice (/) Ehret |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔸 On-Site, ✗ Cancelled

Competence Certificate
course associated assignments, short reports appr. 1 page each

Prerequisites
one

Recommendation
one

Annotation
one
6.72 Course: Hydraulic Engineering [T-BGU-106759]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103376 - Hydraulic Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Modeled Conditions</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6222701</td>
<td>2</td>
<td>River Engineering</td>
<td>2</td>
<td></td>
<td>Rodrigues Pereira da Franca</td>
</tr>
<tr>
<td>ST 2022 6222703</td>
<td>2</td>
<td>Design of Hydraulic Structures</td>
<td>2</td>
<td></td>
<td>Seidel</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written exam, 75 min.

Prerequisites
The not graded accomplishments 'Design Exercise River Engineering', T-BGU-111928, and 'Design Exercise Hydraulic Structures', T-BGU-111929, have to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-111928 - Design Exercise River Engineering must have been passed.
2. The course T-BGU-111929 - Design Exercise Hydraulic Structures must have been passed.

Recommendation
none

Annotation
none
6.73 Course: Hydro Power Engineering [T-BGU-100139]

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100103 - Hydro Power Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6222801</th>
<th>Hydro Power Engineering</th>
<th>4 SWS</th>
<th>Lecture / Practice (/</th>
<th>Oberle</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔷 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

** Recommendation**
none

** Annotation**
none
6.74 Course: Hydrological Measurements in Environmental Systems [T-BGU-106599]

Responsible: Dr. Jan Wienhöfer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103763 - Hydrological Measurements in Environmental Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Online/On-Site/Online</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6224807</td>
<td>Hydrological Measurements in Environmental Systems</td>
<td>4 SWS</td>
<td>/ ●</td>
<td>Each summer term</td>
<td>Wienhöfer, Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The examination consists of four parts:

1. active participation in the seminar (presentation ~ 20 mins)
2. active participation in field and lab work
3. documentation of the field experiments (report ~ 10 pages)
4. analysis of field data (presentation ~ 20 mins and report ~10 pages)

Each part is graded with points, and the overall grade is determined by the number of points obtained.

Passing the exam requires at least 1 point in each of the four parts, and in total the minimum number of points.

Prerequisites
none

Recommendation
none

Annotation
The course requires a minimum number of 6 and a maximum number of 30 participants. Please register online for the course (not exam!), 6224807, via the Campus portal (in exceptional cases via e-mail to the responsible lecturer). Participants are selected according to their progress of study considering the following order: students of Water Science and Engineering, students of Civil Engineering, students of Geocology.
6.75 Course: Information Management for Public Mobility Services [T-BGU-106608]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103357 - Special Issues of Public Transport

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6232905</td>
<td>Informationsmanagement für öffentliche Mobilitätsangebote</td>
<td>2 SWS</td>
<td>Block / 🖥</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🇦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
lecture accompanying exercises, appr. 5 pieces

Prerequisites
none

Recommendation
none

Annotation
none
6.76 Course: Infrastructure Management [T-BGU-106300]

Responsible: Prof. Dr.-Ing. Ralf Roos

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100009 - Infrastructure Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6233801 | Entwurf und Bau von Straßen | 2 SWS | Lecture / 🗣️ | Roos |
| ST 2022 | 6233802 | Betrieb und Erhaltung von Straßen | 2 SWS | Lecture / 🗣️ | Roos |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

written exam, 120 min.

Prerequisites

none

Recommendation

none

Annotation

none
Course: Innovations and Developments in Metal and Lightweight Structures [T-BGU-110854]

Responsible: Dr.-Ing. Matthias Albiez
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-BGU-105372 - Innovations and Developments in Steel and Timber Structures
- M-BGU-105373 - Building Preservation and Innovations in Metal and Lightweight Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6212808 | Innovationen und Entwicklungen im Metall- und Leichtbau | 2 SWS | Lecture / Practice (/) | Albiez, Kasper |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none

Course: Innovations and Developments in Timber Structures [T-BGU-110855]

Responsible: Prof. Dr.-Ing. Philipp Dietsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-105372 - Innovations and Developments in Steel and Timber Structures
- M-BGU-105374 - Building Preservation and Innovations in Timber Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>Event Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>6213906</td>
<td></td>
<td>Innovations and Developments in Timber Structures</td>
<td>2</td>
<td>Lecture / Practice (/ Online)</td>
<td>Sandhaas, Frese</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ☠ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.79 Course: Integrated Design Project in Water Resources Management [T-BGU-111275]

Responsible: Dr.-Ing. Uwe Ehret
Dr.-Ing. Frank Seidel

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105637 - Integrated Design Project in Water Resources Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events
| ST 2022 | 6224801 | Integrated Design Project in Water Resources Management | 4 SWS | Lecture / Practice (/) | Ehret, Seidel |

Legend: 🛥 Online, 🍀 Blended (On-Site/Online), 🔔 On-Site, ✗ Cancelled

Competence Certificate
project work, report approx. 15 pages with presentation approx. 15 min.

Prerequisites
none

Recommendation
none

Annotation
none

Responsible: Dr.-Ing. Michael Gebhardt

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103389 - Hydraulic Structures
M-BGU-105503 - Interaction Flow - Building Structure

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Module</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6221903</td>
<td>Interaction Flow - Hydraulic Structures</td>
<td>2 SWS</td>
<td>Gebhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.81 Course: Introduction to Environmental Data Analysis and Statistical Learning [T-BGU-109949]

Responsible: Dr.-Ing. Uwe Ehret
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-104880 - Introduction to Environmental Data Analysis and Statistical Learning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6224908</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Each term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
The accomplishment Homework 'Introduction to Environmental Data Analysis and Statistical Learning' (T-BGU-109265) has to be passend.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-109950 - Homework 'Introduction to Environmental Data Analysis and Statistical Learning' must have been passed.

Recommendation
none

Annotation
none
6.82 Course: Introduction to Matlab [T-BGU-106765]

Responsible: Dr.-Ing. Uwe Ehret
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103927 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SW</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6224907</td>
<td>Introduction to Matlab</td>
<td>2 SWS</td>
<td>Lecture / Practice /</td>
<td>Ehret, Wienhöfer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Implementation of a Matlab code within a class exercise

Prerequisites

none

Recommendation

none

Annotation

The course is limited to 60 participants. Please register via the student portal (Studierendenportal). Only in case that this should not be possible: Please register via e-mail to the responsible lecturer. Participants are selected according to their progress of study considering the following order: students of Water Science and Engineering, then students of Civil Engineering with focus 'Water and Environment', then other students.
6.83 Course: Landfills [T-BGU-100084]

Responsible: Dr.-Ing. Andreas Bieberstein
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100079 - Environmental Geotechnics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Type</th>
<th>Module</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Each winter term</td>
<td>Oral examination</td>
<td>6251913</td>
<td>Bieberstein</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Line/On-Site), On-Site, Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.84 Course: Laws and Proceedings Concerning Traffic and Roads [T-BGU-106297]

Responsible: Hon.-Prof. Dr. Dietmar Höning
Prof. Dr.-Ing. Ralf Roos
Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100011 - Laws and Proceedings Concerning Traffic and Roads

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6232801</td>
<td>Bewertungs- und Entscheidungsverfahren</td>
<td>1</td>
<td>Lecture</td>
<td>Chlond</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6233803</td>
<td>Verkehrs-, Planungs- und Wegerecht</td>
<td>2</td>
<td>Lecture</td>
<td>König</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6233804</td>
<td>Umweltverträglichkeitsstudien im Straßenwesen</td>
<td>1</td>
<td>Lecture</td>
<td>Roos</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
written exam, 120 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.85 Course: Leadership and Communication [T-BGU-111900]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105917 - Leadership and Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6241805 | Leadership and Communication | 4 SWS | Lecture / Practice (/ | Haghsheno, Eschen |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗞 On-Site, 🗿 Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.86 Course: Lean Construction [T-BGU-108000]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100104 - Lean Construction

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>6241901</td>
<td>Lean Construction</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Haghsheno, Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 70 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.87 Course: Lean Integrated Project Delivery [T-BGU-111910]

Responsible: Prof. Dr.-Ing. Shervin Haghshehno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105925 - Lean Integrated Project Delivery (Lean IPD)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.88 Course: Long-Distance and Air Traffic [T-BGU-106301]

Responsible: Bastian Chlond
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100020 - Intermodality in Freight, Long-Distance and Air Transport

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6232904 | Fern- und Luftverkehr | 2 SWS | Lecture / 🧩 | Chlond, Dozenten |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.89 Course: Machinery and Process Engineering [T-BGU-100623]

Responsible: Prof. Dr.-Ing. Sascha Gentes

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100339 - Machinery and Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Time</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6241703</td>
<td>Verfahrenstechnik</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Schneider</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6243701</td>
<td>Maschinentechnik</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Gentes, Dörfler</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.90 Course: Mass Fluxes in River Basins [T-BGU-111061]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103373 - River Basin Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>3</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Expansion</th>
<th>1 terms</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Events

| ST 2022 | 6223812 | Mass Fluxes in River Basins | 2 SWS | Lecture / Online | Fuchs, Morling |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled

Competence Certificate

Working on exercises: report, appr. 5 pages, and presentation, appr. 10 min.

Prerequisites

None

Recommendation

None

Annotation

None
6.91 Course: Master Thesis [T-BGU-110135]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-104996 - Module Master Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>30</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- duration appr. 6 months
- presentation within one month after submission of the thesis

Prerequisites
defined for the module Master Thesis

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 6 months
- **Maximum extension period**: 3 months
- **Correction period**: 8 weeks

This thesis requires confirmation by the examination office.

Recommendation
see module

Annotation
Information about the procedure regarding admission and registration of the Master Thesis see chap. 2.9.
6.92 Course: Material Models in Solid Mechanics [T-BGU-100044]

Responsible: Prof. Dr.-Ing. Thomas Seelig
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100054 - Material Models in Solid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6215801 | Anwendungsorientierte Materialtheorien | 2 SWS | Lecture / 🗣 | Helbig |
| ST 2022 | 6215802 | Übungen zu Anwendungsorientierte Materialtheorien | 2 SWS | Practice / 🗣 | Helbig |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.93 Course: Material Science, Welding and Fatigue [T-BGU-100023]

Responsible: Dr.-Ing. Philipp Weidner
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100039 - Material Science, Welding and Fatigue

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6212803 | Stahlwerkstoffe, Schweißtechnik und Ermüdung | 4 SWS | Lecture / Practice | Seyfried, Weidner |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.94 Course: Materials Testing and Measuring Techniques [T-BGU-100043]

Responsible: Dr.-Ing. Nico Herrmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100061 - Materials Testing and Measuring Techniques

### Type	Credits	Grading scale	Recurrence	Version
Oral examination | 6 | Grade to a third | Each term | 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6211911</td>
<td>Messverfahren im konstruktiven Ingenieurbau</td>
<td>1</td>
<td>Lecture / 🗣</td>
<td>Herrmann, Dehn</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6211912</td>
<td>Übungen zu Messverfahren im konstruktiven Ingenieurbau</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Herrmann</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6211913</td>
<td>Materialprüfung im Stahlbetonbau</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Herrmann, Dehn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.95 Course: Micromechanics of Heterogeneous Solids [T-BGU-108879]

Responsible: Dr. Ingo Schmidt

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100064 - Continuum Mechanics of Heterogeneous Solids

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6215805 | Mechanik heterogener Festkörper | 2 SWS | Lecture / 🗣 | Schmidt |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, appr. 20 min.

Prerequisites

none

Recommendation

none

Annotation

none
Course: Modeling of Turbulent Flows - RANS and LES [T-BGU-110842]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105362 - Modeling of Turbulent Flows - RANS and LES

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6221911 Modelling of Turbulent Flows - RANS and LES</td>
<td>4 SWS</td>
<td>Lecture / Practice (/ Uhlmann</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.97 Course: Modeling Techniques in Solid Mechanics [T-BGU-103223]

Responsible: apl. Prof. Dr. Alexander Konyukhov
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101673 - Modeling in Solid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type of Lecture / Practice</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6215807</td>
<td>Modellbildung in der Festigkeitslehre</td>
<td>4 SWS</td>
<td>Lecture / Practice (/)</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Legend: 🏛 Online, 📚 Blended (On-Site/Online), ⌜ On-Site, ✕ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.98 Course: Models and Methods in Traffic Engineering and Transportation Planning [T-BGU-100012]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100008 - Models and Methods in Traffic Engineering and Transportation Planning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6232701</td>
<td>Berechnungsverfahren und Modelle in der Verkehrsplanung</td>
<td>2</td>
<td>Lecture / Practice (/ 🗣️)</td>
<td>Vortisch, Mitarbeiter/innen</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6232703</td>
<td>Straßenverkehrstechnik</td>
<td>2</td>
<td>Lecture / Practice (/ 🗣️)</td>
<td>Vortisch, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.99 Course: Non-linear Analysis of Beam Structures [T-BGU-100030]

Responsible: Prof. Dr.-Ing. Steffen Freitag
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100046 - Non-linear Analysis of Beam Structures

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6214702</td>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 21/22 6214703</td>
<td>Exercises to Non-linear Analysis of Beam Structures</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Fina</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 6214703</td>
<td>Exercises to Non-linear Analysis of Beam Structures</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Panther</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.100 Course: Non-linear Analysis of Surface Structures [T-BGU-100035]

Responsible: Prof. Dr.-Ing. Werner Wagner

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100051 - Non-linear Analysis of Surface Structures

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6214903</td>
<td>Non-linear Analysis of Surface Structures</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 21/22 6214904</td>
<td>Übungen zu Nichtlineare Modellierung von Flächentragwerken</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎤 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 3 min.

Prerequisites
none

Recommendation
none

Annotation
none

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103390 - Numerical Flow Modeling in Hydraulic Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6222903</td>
<td>Numerische Strömungsmodellierung im Wasserbau</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.102 Course: Numerical Fluid Mechanics [T-BGU-106758]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103375 - Numerical Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6221702 | Numerical Fluid Mechanics I | 4 SWS | Lecture / Practice (/) | Uhlmann |

Legend: 🖥 Online, 🧱 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.103 Course: Numerical Fluid Mechanics II [T-BGU-106768]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103384 - Advanced Computational Fluid Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6221809 | Numerical Fluid Mechanics II | 2 SWS | Lecture / Practice (/) | Uhlmann |

Legend: 🖥 Online, 🏗 Blended (On-Site/Online), ⌚ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
module Numerical Fluid Mechanics [bauiM2P5-NUMFLMECH] must be completed

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-BGU-103375 - Numerical Fluid Mechanics must have been passed.

Recommendation
none

Annotation
none
6.104 Course: Numerical Groundwater Modeling [T-BGU-100625]

Responsible: Dr. Ulf Mohrlok
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100340 - Groundwater Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6221901 | Numerical Groundwater Modeling | 2 SWS | Project (P / 🧩) | Mohrlok |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Project report, appr. 15 pages

Prerequisites

None

Recommendation

None

Annotation

None
6.105 Course: Numerical Methods in Structural Analysis [T-BGU-100034]

Responsible: Prof. Dr.-Ing. Steffen Freitag
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100050 - Numerical Methods in Structural Analysis

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6214901</td>
<td>6</td>
<td>Oral examination</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 21/22 6214902</td>
<td>2 SWS</td>
<td>Lecture / Fina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 6214902</td>
<td>2 SWS</td>
<td>Practice / Fina</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events
- WT 21/22 6214901: Numerische Methoden in der Baustatik
- WT 21/22 6214902: Übungen zu Numerische Methoden in der Baustatik

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.106 Course: Numerical Modelling in Geotechnics [T-BGU-100107]

Responsible: apl. Prof. Dr. Andrzej Niemunis

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100075 - Numerical Modelling in Geotechnics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organisations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6251818</td>
<td>2 SWS</td>
<td></td>
<td>Exercises in Numerical Modelling</td>
<td>Practice / 🗣</td>
<td>Niemunis</td>
</tr>
<tr>
<td>ST 2022 6251819</td>
<td>2 SWS</td>
<td></td>
<td>FEM Applications in Geotechnical Modelling</td>
<td>Lecture / 🗣</td>
<td>Niemunis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.;
on base of a programming project worked at during the semester

Prerequisites
none

Recommendation
none

Annotation
none
6.107 Course: Numerics in Geotechnics [T-BGU-106197]

Responsible: apl. Prof. Dr. Andrzej Niemunis
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100070 - Basics of Numeric Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6251707 | Numerics in Geotechnics | 2 SWS | Lecture / 🖥 | Niemunis |

Legend: 🖥 Online, ☐ Blended (On-Site/Online), ☑ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.108 Course: Parallel Programming Techniques for Engineering [T-BGU-106769]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103384 - Advanced Computational Fluid Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6221807</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel programming techniques for engineering problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
module Numerical Fluid Mechanics [bauiM2P5-NUMFLMECH] must be completed

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-BGU-103375 - Numerical Fluid Mechanics must have been passed.

Recommendation
none

Annotation
none
6.109 Course: Planning of Transportation Systems [T-BGU-100013]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100016 - Planning of Transportation Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6232806</td>
<td>Eigenschaften von Verkehrsmitteln</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Vortisch</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6232808</td>
<td>Strategische Verkehrsplanung</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Waßmuth</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 120 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Practical Exercises Dynamics of Structures [T-BGU-111044]

Responsible: Prof. Dr.-Ing. Peter Betsch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103951 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>2</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each winter term</th>
<th>Expansion</th>
<th>1 terms</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>6215701</th>
<th>Baudynamik</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Betsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6215905</td>
<td>Baudynamikpraktikum</td>
<td>2 SWS</td>
<td>Practical course / 🗣</td>
<td>Betsch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
reports 2-4 pages per experiment

Prerequisites
none

Recommendation
none

Annotation
in addition to course Dynamics of Structures, selectable in module Further Examinations (M-BGU-103951)
6.111 Course: Practical Fire Protection [T-BGU-100042]

Responsible: Hon.-Prof. Dr. Hermann Schröder
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100060 - Building Physics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6211815</td>
<td>2 SWS</td>
<td>Schröder</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.112 Course: Practical Noise Control [T-BGU-108024]

Responsible: Christian Zander
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100060 - Building Physics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6211814 | Practical Noise Control | 2 SWS | Lecture / 🗣️ | Zander |

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Production Planning and Control in Construction [T-BGU-111901]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105918 - Production Planning and Control in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6241801</td>
<td>Site Management</td>
<td>1</td>
<td>Lecture / Practice</td>
<td>Miernik, Kohlhammer, Haghsheno</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6241803</td>
<td>Site Planning and Handling</td>
<td>3</td>
<td>Lecture / Practice</td>
<td>Miernik, Kohlhammer, Haghsheno</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ❌ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.114 Course: Project Integrated Planning [T-BGU-100061]

Responsible: Prof. Dr.-Ing. Ralf Roos
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100018 - Project Integrated Planning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Exam Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6230901</td>
<td>Projekt Integriertes Planen</td>
<td>4</td>
<td>Project (P)</td>
<td>Roos, Zimmermann, Chlond</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate

oral exam, appr. 30 min.

Prerequisites

Group exercise Project Integrated Planning has to be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-109916 - Group Exercise Project Integrated Planning must have been passed.

Recommendation

none

Annotation

none
T 6.115 Course: Project Lean Integrated Project Delivery [T-BGU-111911]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105925 - Lean Integrated Project Delivery (Lean IPD)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
case study report, appr. 15 pages;
final presentation and colloquium, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.116 Course: Project Management in Construction and Real Estate Industry [T-BGU-100622]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100338 - Project Management in Construction and Real Estate Industry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6241701 | Projektmanagement in der Bau- und Immobilienwirtschaft | 4 SWS | Lecture / Practice (| Haghsheno, Hirschberger, Sittinger, Münzl |

Competence Certificate

- case study during the semester:
 - report appr. 15 pages
 - interim presentations and final presentations 10 min. each
 - colloquium at the end of the semester appr. 10 min.

Prerequisites

- none

Recommendation

- none

Annotation

- none
6.117 Course: Project Paper Lean Construction [T-BGU-101007]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100104 - Lean Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6241901</td>
<td>Lean Construction</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Haghsheno, Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

report, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites

none

Recommendation

none

Annotation

none

Responsible: Dr.-Ing. Peter Oberle

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-104100 - Water Distribution Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type of Event</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6222905</td>
<td>Water Distribution Systems</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Oberle</td>
</tr>
</tbody>
</table>

Competence Certificate

- project report, appr. 15 pages, and presentation, appr. 15 min.

Prerequisites

- none

Recommendation

- none

Annotation

- none
Course: Project Studies in Water Resources Management [T-BGU-106783]

Responsible: Dr.-Ing. Frank Seidel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103394 - Project Studies in Water Resources Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6222901 | Projektstudium: Wassernirtschaftliche Planungen | 4 SWS | Lecture / Practice (| Seidel |

Competence Certificate

Project work: term paper, appr. 15 pages, with presentation

Prerequisites

None

Recommendation

None

Annotation

None
6.120 Course: Real Estate Management [T-BGU-100629]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100346 - Real Estate Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>6242901</th>
<th>Real Estate Management Controlling</th>
<th>1 SWS</th>
<th>Lecture</th>
<th>Lennerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6242902</td>
<td>Property Valuation Basics</td>
<td>1 SWS</td>
<td>Lecture</td>
<td>Lennerts</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6242903</td>
<td>Corporate and Public Real Estate Management</td>
<td>1 SWS</td>
<td>Lecture</td>
<td>Lennerts</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6242904</td>
<td>Project development with Case Study</td>
<td>1 SWS</td>
<td>Lecture</td>
<td>Lennerts, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.121 Course: Real Estate und Facility Management - on Site Lectures [T-BGU-111909]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105924 - Real Estate and Facility Management - on Site Lectures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
report appr. 15 pages and presentatin/colloquium appr. 15 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.122 Course: Research Seminar Construction Management [T-BGU-108008]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103917 - Research Seminar Construction Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6241906</td>
<td>Baubetriebliches Forschungsseminar II</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Haghsheno, Mitarbeiter/innen</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>6241814</td>
<td>Baubetriebliches Forschungsseminar I</td>
<td>Seminar / 🧩</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Haghsheno, Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
project report, appr. 25 pages, and colloquium

Prerequisites
one

Recommendation
one

Annotation
one
6.123 Course: River Basin Modeling [T-BGU-106603]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103373 - River Basin Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6223904 Modelling Mass Fluxes in River Basins</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ Fuchs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

project report, appr. 10 pages, and presentation, appr. 15 min.

Prerequisites
The not graded accomplishment 'Mass Fluxes in River Basins' has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-111061 - Mass Fluxes in River Basins must have been passed.

Recommendation
none

Annotation
none
Course: River Processes [T-BGU-111930]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105927 - River Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6222805</td>
<td>Landscape and River Morphology</td>
<td>2</td>
<td>Lecture / Practice (/)</td>
<td>Rodrigues Pereira da Franca</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6222807</td>
<td>Transport Processes in Rivers</td>
<td>2</td>
<td>Lecture / Practice (/)</td>
<td>Rodrigues Pereira da Franca</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Report about student project on Landscape and River Morphology, appr. 10 pages; report about student project on Transport Processes in Rivers, appr. 10 pages; final colloquium, appr. 20 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.125 Course: Road Construction [T-BGU-100058]

Responsible: Prof. Dr.-Ing. Ralf Roos

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100006 - Road Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Lecture ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Lecture / Practice /</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6233904</td>
<td>Laborpraktikum im Straßenwesen</td>
<td>2 SWS</td>
<td>Lecture / Practice /</td>
<td>Plachkova-Dzhurova</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6233905</td>
<td>Bemessung von Fahrbahnkonstruktionen und Schadensanalytik</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Plachkova-Dzhurova</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Road Safety [T-BGU-100062]

Responsible: Dr.-Ing. Matthias Zimmermann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100021 - Road Safety

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Event Description</th>
<th>Type/Lecture</th>
<th>Type/Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6233906</td>
<td>2 SWS</td>
<td>Sicherheitsmanagement im Straßenwesen</td>
<td>Lecture</td>
<td>/ Practice</td>
<td>Zimmermann</td>
</tr>
<tr>
<td>WT 21/22 6233908</td>
<td>2 SWS</td>
<td>Seminar im Straßenwesen</td>
<td>Seminar</td>
<td>/</td>
<td>Zimmermann</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
Seminar paper Road Safety has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-109915 - Seminar Paper Road Safety must have been passed.

Recommendation
none

Annotation
none
6.127 Course: Rock Engineering and Underground Construction [T-BGU-100074]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100074 - Rock Engineering and Underground Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Description</th>
<th>SWS</th>
<th>Lecture/Practice</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6251905</td>
<td>Aboveground Rock Engineering</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ Online)</td>
<td>Kudella</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6251907</td>
<td>Tunnel Construction in Soils and in Existence</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ Online)</td>
<td>Kudella, Wagner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌠-cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Rock Mechanics and Tunneling [T-BGU-100069]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100069 - Rock Mechanics and Tunneling

Type
- Written examination

Credits
- 5

Grading scale
- Grade to a third

Recurrence
- Each term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6251804</td>
<td>Basics in Rock Mechanics</td>
<td>2</td>
<td>Lecture / Practice</td>
<td>Mutschler</td>
</tr>
<tr>
<td>6251806</td>
<td>Basics in Tunnel Construction</td>
<td>2</td>
<td>Lecture / Practice</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
- written exam, 90 min.

Prerequisites
- none

Recommendation
- preparation of the student research project for examination preparation

Annotation
- none
6.129 Course: Self Assignment HoC-ZAK-SpZ 1 not graded [T-BGU-111596]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103927 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Expansion</td>
<td>1 terms</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
according to the assignment to be credited

Prerequisites
none

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Recommendation
none

Annotation
'Not assigned grades' can be assigned by the students themselves; title and CP of the grades are taken over
Course: Self Assignment HoC-ZAK-SpZ 2 not graded [T-BGU-111597]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103927 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
according to the assignment to be credited

Prerequisites
none

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Recommendation
none

Annotation
'Not assigned grades' can be assigned by the students themselves; title and CP of the grades are taken over
Course: Self Assignment HoC-ZAK-SpZ 3 not graded [T-BGU-111598]

6.131 Course: Self Assignment HoC-ZAK-SpZ 3 not graded [T-BGU-111598]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103927 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Expansion</td>
<td>1 terms</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
according to the assignment to be credited

Prerequisites
none

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Recommendation
none

Annotation
'Not assigned grades' can be assigned by the students themselves; title and CP of the grades are taken over.
6.132 Course: Self Assignment HoC-ZAK-SpZ 4 graded [T-BGU-111599]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103927 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
according to the assignment to be credited

Prerequisites
none

Self service assignment of supplementary studies
This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Recommendation
none

Annotation
'Not assigned grades' can be assigned by the students themselves; title and CP of the grades are taken over
6.133 Course: Self Assignment HoC-ZAK-SpZ 5 graded [T-BGU-111600]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103927 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
according to the assignment to be credited

Prerequisites
none

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Recommendation
none

Annotation
'Not assigned grades' can be assigned by the students themselves; title and CP of the grades are taken over
6.134 Course: Self Assignment HoC-ZAK-SpZ 6 graded [T-BGU-111601]

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103927 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
according to the assignment to be credited

Prerequisites
none

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Recommendation
none

Annotation
'Not assigned grades' can be assigned by the students themselves; title and CP of the grades are taken over
6.135 Course: Seminar Construction Machinery [T-BGU-111907]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105921 - Seminar Construction Machinery

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6241816</th>
<th>Seminar Construction Machinery</th>
<th>4 SWS</th>
<th>Seminar / 🧩</th>
<th>Schneider</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
-portfolio:
 - report appr. 15 pages
 - presentation 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.136 Course: Seminar in Transportation [T-BGU-100014]

Responsible: Bastian Chlond
Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103357 - Special Issues of Public Transport

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6232903</td>
<td>2 SWS</td>
<td>Seminar Verkehrswesen</td>
<td>Seminar / 📦</td>
<td>Vortisch, KIT</td>
<td></td>
</tr>
<tr>
<td>ST 2022 6232903</td>
<td>2 SWS</td>
<td>Seminar Verkehrswesen</td>
<td>Seminar / 📦</td>
<td>Chlond, Vortisch, Kagerbauer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
seminar paper, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.137 Course: Seminar Paper Road Safety [T-BGU-109915]

Responsible: Dr.-Ing. Matthias Zimmermann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100021 - Road Safety

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Expansion</td>
<td>1 terms</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Event</th>
<th>Type</th>
<th>Timeslots</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6233908</td>
<td>Seminar im Straßenwesen</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Zimmermann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 📑 Cancelled

Competence Certificate

Integrated seminar paper of the team, appr. 10 pages/person and plan documents, presentation appr. 10 min.

Prerequisites

None

Recommendation

None

Annotation

None
6.138 Course: Seminar Paper 'Waterway Engineering' [T-BGU-106779]

Responsible: Dr.-Ing. Andreas Kron

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103392 - Waterway Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6222803 | Waterway Engineering | 4 SWS | Lecture / Practice (/ | Kron |

Competence Certificate

seminar paper, appr. 15 pages

Prerequisites

none

Recommendation

none

Annotation

none
Course: Shell Structures and Stability of Structures [T-BGU-100033]

6.139 Course: Shell Structures and Stability of Structures [T-BGU-100033]

Responsible: Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100049 - Shell Structures and Stability of Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6214805 Schalentragwerke</td>
<td>Lecture / 🗣️</td>
<td>1 SWS</td>
<td>Fina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6214806 Übungen zu Schalentragwerke</td>
<td>Practice / 🗣️</td>
<td>1 SWS</td>
<td>Fina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6214807 Stabilität von Tragwerken</td>
<td>Lecture / 🗣️</td>
<td>1 SWS</td>
<td>Fina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6214808 Übungen zu Stabilität von Tragwerken</td>
<td>Practice / 🗣️</td>
<td>1 SWS</td>
<td>Lienhard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟢 Blended (On-Site/Online), 🗣️ On-Site, 🗿 Cancelled

Competence Certificate

oral exam, appr. 40 min.

Prerequisites

Student research project "Shell Structures and Stability of Structures" has to be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-100254 - Student Research Project ‘Shell Structures and Stability of Structures’ must have been passed.

Recommendation

none

Annotation

none
6.140 Course: Solid Construction Bridges [T-BGU-100020]

Responsible: Prof. Dr.-Ing. Alexander Stark

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100037 - Solid Construction Bridges

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6211901</td>
<td>Massivbrücken</td>
<td>2 SWS</td>
<td>Retzepis</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6211902</td>
<td>Übungen zu Massivbrücken</td>
<td>2 SWS</td>
<td>Heiland</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.141 Course: Space and Infrastructure [T-BGU-100056]

Responsible: PD Dr.-Ing. Martin Kagerbauer
Dr. Sina Keller

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100014 - Space and Infrastructure

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6072201</td>
<td>Grundlagen Geographischer Informationssysteme für die Modellierung und Planung</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Keller</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6072202</td>
<td>Grundlagen Geographischer Informationssysteme für die Modellierung und Planung, Übung</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Keller</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6231805</td>
<td>Erschließung, Ver- und Entsorgungsplanung</td>
<td>2</td>
<td>Lecture / Practice (/ 🗣️)</td>
<td>Kagerbauer</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
Exercise Space and Infrastructure must be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-111278 - Exercises Space and Infrastructure must have been passed.

Recommendation
one

Annotation
one
6 COURSES

Course: Special Issues in Rock Mechanics [T-BGU-111058]

6.142 Course: Special Issues in Rock Mechanics [T-BGU-111058]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100077 - Coupled Geomechanic Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6251916</td>
<td>Special Issues in Rock Mechanics</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ X</td>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏬 Blended (On-Site/Online), 🗠 On-Site, ✗ Cancelled

Competence Certificate
presentation, appr. 10 min., with written report, 5 - 10 pages

Prerequisites
none

Recommendation
none

Annotation
none
Course: Special Issues of Soil Mechanics [T-BGU-100071]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100005 - Special Issues of Soil Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6251901</td>
<td>Unsaturated, Viscous and Cyclic Soil Behaviour - Theory and Element Tests</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Niemunis</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6251903</td>
<td>Soil Dynamics</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Osinov</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.144 Course: Special Topics in Highway Engineering [T-BGU-106734]

Responsible: Rainer Hess
Prof. Dr.-Ing. Ralf Roos

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100022 - Special Topics in Highway Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6233805</td>
<td>Lecture / 🖥️</td>
<td>2 SWS</td>
<td>Lecture / 🖥️</td>
<td>Hess</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6233806</td>
<td>Lecture / 🗣️️</td>
<td>1 SWS</td>
<td>Lecture / 🗣️️</td>
<td>Roos, Mitarbeiter/innen</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6233807</td>
<td>Lecture / 🖥️</td>
<td>1 SWS</td>
<td>Lecture / 🖥️</td>
<td>Roos</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣️️ On-Site, ☠️ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.145 Course: Steel and Composite Structures [T-BGU-100016]

Responsible: Prof. Dr.-Ing. Thomas Ummenhofer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100034 - Steel and Composite Structures

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Stahl- und Stahlverbundbau</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Übungen zu Stahl- und Stahlverbundbau</td>
<td>2 SWS</td>
<td>Practice / 🗓️</td>
<td>Ummenhofer, Mitarbeiter/innen</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.146 Course: Student Research Project 'Building Preservation of Concrete and Masonry Constructions' [T-BGU-100175]

Responsible: Dr.-Ing. Engin Kotan
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100058 - Building Preservation of Concrete and Masonry Constructions

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6211811 Protection, Rehabilitation and Reinforcement of Concrete and Masonry Constructions</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Kotan</td>
<td></td>
</tr>
<tr>
<td>ST 2022 6211812 Exercises to Protection, Rehabilitation and Reinforcement of Concrete and Masonry Constructions</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Kotan</td>
<td></td>
</tr>
<tr>
<td>ST 2022 6211813 Building Analysis</td>
<td>1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Kotan, Vogel</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☨ Blended (On-Site/Online), 🗣️ On-Site, ☓ Cancelled

Competence Certificate
student research paper, 15-20 pages;
definition of a project available from lecturer

Prerequisites
none

Recommendation
none

Annotation
none
6.147 Course: Student Research Project 'Computational Analysis of Structures' [T-BGU-100174]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Responsible
Prof. Dr.-Ing. Steffen Freitag

Organisation
KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of
M-BGU-100047 - Computational Analysis of Structures

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6214801</td>
<td>Computational Analysis of Structures</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Wagner</td>
<td></td>
</tr>
<tr>
<td>ST 2022 6214802</td>
<td>Exercises to Computational Analysis of Structures</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Geiger</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
student research project, appr. 15 pages
definition of a project available from lecturer

Prerequisites
none

Recommendation
none

Annotation
none
6.148 Course: Student Research Project 'Cost Estimation in Structural Engineering and Earthworks' [T-BGU-108010]

Responsible: Dr.-Ing. Harald Schneider
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105918 - Production Planning and Control in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>1</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Version</th>
<th>2</th>
</tr>
</thead>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>1</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Version</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6241801</td>
<td>Site Management</td>
<td>1 SWS</td>
<td>Lecture / Practice</td>
<td>N.N.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

term paper, appr. 15 pages, with test

Prerequisites

none

Recommendation

none

Annotation

none
6.149 Course: Student Research Project 'Dynamics of Structures' [T-BGU-107819]

Responsible: Prof. Dr.-Ing. Peter Betsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100035 - Surface Structures and Dynamics of Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6215701</td>
<td>Baudynamik</td>
<td>2 SWS</td>
<td>Lecture / 🗣️ Betsch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
term paper;
definition of a project available from lecturer

Prerequisites
none

Recommendation
none

Annotation
none
6.150 Course: Student Research Project 'Earthworks and Foundation Engineering' [T-BGU-100178]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100068 - Earthworks and Foundation Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6251701</td>
<td>Foundation Types</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ Knittel</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 6251703</td>
<td>Basics in Earthworks and Embankment Dams</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ Bieberstein</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
report appr. 45 pages;
definition of a project available from lecturer

Prerequisites
none

Recommendation
none

Annotation
none
6.151 Course: Student Research Project 'Excavation Pit Development and Shuttering Planning' [T-BGU-108012]

Responsible: Dr.-Ing. Harald Schneider

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100339 - Machinery and Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6241703</td>
<td>Verfahrenstechnik</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
<td>Each winter term</td>
<td>Schneider</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6243701</td>
<td>Maschinentechnik</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
<td></td>
<td>Gentes, Dörfler</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

term paper, appr. 15 pages, with test

Prerequisites

none

Recommendation

none

Annotation

none
6.152 Course: Student Research Project 'Reinforced Concrete' [T-BGU-100170]

Responsible: Prof. Dr.-Ing. Alexander Stark

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100033 - Design and Construction of Components in Reinforced Concrete

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6211701 | Bemessung und Konstruktion von Bauteilen im Stahlbeton | 2 SWS | Lecture | Müller |
| WT 21/22 | 6211702 | Übungen zu Bemessung und Konstruktion von Bauteilen im Stahlbeton | 2 SWS | Practice | Müller |

Competence Certificate

term paper;
definition of a project available from lecturer

Prerequisites

none

Recommendation

none

Annotation

none
6.153 Course: Student Research Project 'Rock Mechanics and Tunneling' [T-BGU-100179]

Responsible: Prof. Dr.-Ing. Hans Henning Stutz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences University

Part of: M-BGU-100069 - Rock Mechanics and Tunneling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Basics in Rock Mechanics</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Mutschler</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>Basics in Tunnel Construction</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
report appr. 15 pages; definition of a project available from lecturer

Prerequisites
none

Recommendation
none

Annotation
none
6.154 Course: Student Research Project 'Scheduling and Building Site Facilities' [T-BGU-108011]

Responsible: Dr.-Ing. Harald Schneider

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100338 - Project Management in Construction and Real Estate Industry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 6241701 | Projektmanagement in der Bau- und Immobilienwirtschaft | 4 SWS | Lecture / Practice (Haghsheno, Hirschberger, Sitterg, Münzl) |

Competence Certificate

term paper, appr. 15 pages, with test

Prerequisites

none

Recommendation

none

Annotation

none
6.155 Course: Student Research Project 'Shell Structures and Stability of Structures' [T-BGU-100254]

Responsible: Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100049 - Shell Structures and Stability of Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6214805</td>
<td>Schalentragwerke</td>
<td>1</td>
<td>Lecture</td>
<td>Fina</td>
</tr>
<tr>
<td>ST 2022 6214806</td>
<td>Übungen zu Schalentragwerke</td>
<td>1</td>
<td>Practice</td>
<td>Fina</td>
</tr>
<tr>
<td>ST 2022 6214807</td>
<td>Stabilität von Tragwerken</td>
<td>1</td>
<td>Lecture</td>
<td>Fina</td>
</tr>
<tr>
<td>ST 2022 6214808</td>
<td>Übungen zu Stabilität von Tragwerken</td>
<td>1</td>
<td>Practice</td>
<td>Lienhard</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☰ Blended (On-Site/Online), ☢ On-Site, ☑ Cancelled

Competence Certificate
student research project, appr. 15 pages
definition of a project available from lecturer

Prerequisites
none

Recommendation
none

Annotation
none
6.156 Course: Student Research Project 'Steel Structures' [T-BGU-100171]

Responsible: Prof. Dr.-Ing. Thomas Ummenhofer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100034 - Steel and Composite Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Lecturer/Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6212801</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Stahl- und Stahlverbundbau</td>
<td>Ummenhofer</td>
</tr>
<tr>
<td>ST 2022 6212802</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Übungen zu Stahl- und Stahlverbundbau</td>
<td>Ummenhofer, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☛ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
term paper;
definition of a project available from lecturer

Prerequisites
none

Recommendation
none

Annotation
none
6.157 Course: Student Research Project 'Surface Structures' [T-BGU-107818]

Responsible: Prof. Dr.-Ing. Steffen Freitag
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100035 - Surface Structures and Dynamics of Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6214701</td>
<td></td>
<td>Surface Structures</td>
<td>2 SWS</td>
<td>Lecture / Freitag</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧱 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

term paper;
definition of a project available from lecturer

Prerequisites

none

Recommendation

none

Annotation

none
6.158 Course: Study Project Design of a Rural Road [T-BGU-109917]

Responsible: Prof. Dr.-Ing. Ralf Roos
Dr.-Ing. Matthias Zimmermann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100017 - Highway Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Expansion</td>
<td>1 terms</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>WT 21/22</th>
<th>6233903</th>
<th>Projektstudie Außerortsstraße</th>
<th>2 SWS</th>
<th>Lecture / Practice (/)</th>
<th>Zimmermann, Roos</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate
preparation of 4 planning documents

Prerequisites
none

Recommendation
none

Annotation
none
6.159 Course: Surface Structures [T-BGU-100017]

Responsible: Prof. Dr.-Ing. Steffen Freitag
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100035 - Surface Structures and Dynamics of Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6214701</td>
<td>Surface Structures</td>
<td>2 SWS</td>
<td>Lecture / Freitag</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.160 Course: Sustainability in Mobility Systems [T-BGU-111057]

Responsible: PD Dr.-Ing. Martin Kagerbauer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103357 - Special Issues of Public Transport

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week (Term)</th>
<th>Event Code</th>
<th>Event Name</th>
<th>Weekly SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6232906</td>
<td>Sustainability in Mobility Systems</td>
<td>2 SWS</td>
<td>Lecture/🖥</td>
<td>Kagerbauer, Plötz, Gnann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ☓ Cancelled

Competence Certificate

written exam, 60 min., computer-based

Prerequisites

none

Recommendation

none

Annotation

none
6.161 Course: Sustainability in Real Estate Management [T-BGU-100149]

- **Responsible:** Prof. Dr.-Ing. Kunibert Lennerts
- **Organisation:** KIT Department of Civil Engineering, Geo- and Environmental Sciences
- **Part of:** M-BGU-100112 - Sustainability in Real Estate Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6242801 Sustainability in Real Estate Management 2 SWS Lecture / Practice (/ Lennerts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6242803 Life Cycle Management of Real Estate 1 SWS Lecture / Lennerts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6242804 Facility and Real Estate Management 2 1 SWS Lecture / Lennerts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.162 Course: Tank Construction [T-BGU-101000]

Responsible: Dr. Peter Knödel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100580 - Tank Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Date</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6212910</td>
<td>Tank Construction</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Knödel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6212911</td>
<td>Übungen zu Behälterbau</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Knödel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6 COURSES

Course: Technology and Production Methods in Turnkey Construction and Civil Engineering Works [T-BGU-111899]

6.163 Course: Technology and Production Methods in Turnkey Construction and Civil Engineering Works [T-BGU-111899]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105913 - Technology and Production Methods in Turnkey Construction and Civil Engineering Works

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6241808 Turnkey Construction</td>
<td>2 SWS</td>
<td>Lecture / Practice / Blended</td>
<td>Teizer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6241810 Civil Engineering Structures and Regenerative Energies</td>
<td>2 SWS</td>
<td>Lecture / Practice / Blended</td>
<td>Haghsheno, Mitarbeiter/innen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☢ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Tendering, Planning and Financing in Public Transport [T-BGU-101005]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103357 - Special Issues of Public Transport

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6232807</th>
<th>Wettbewerb, Planung und Finanzierung im ÖPNV</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Pischon</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🕰 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.165 Course: Term Paper Tank Construction [T-BGU-101001]

Responsible: Dr. Peter Knödel
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100580 - Tank Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>6212910</th>
<th>Tank Construction</th>
<th>3 SWS</th>
<th>Lecture</th>
<th>Knödel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6212911</td>
<td>Übungen zu Behälterbau</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Knödel</td>
</tr>
</tbody>
</table>

Competence Certificate

term paper with presentation, appr. 20 pages

Prerequisites

none

Recommendation

none

Annotation

none
6.166 Course: Term Paper Upgrading of Existing Buildings and Energetic Refurbishment [T-BGU-100621]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100108 - Upgrading of Existing Buildings and Energetic Refurbishment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6240901 Bauen im Bestand</td>
<td>3 SWS</td>
<td>Lecture / Practice (Lennerts, Schneider)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 6240903 Energetische Sanierung</td>
<td>1 SWS</td>
<td>Lecture</td>
<td>Kropp, Schneider, Münzl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
term paper, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.167 Course: Term Paper 'Wastewater Treatment Technologies' [T-BGU-111282]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-104917 - Wastewater Treatment Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>3</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Expansion</th>
<th>1 terms</th>
<th>Version</th>
<th>2</th>
</tr>
</thead>
</table>

Events

| ST 2022 | 6223801 | Wastewater Treatment Technologies | 4 SWS | Lecture / Practice | / | Azari Najaf Abad, Fuchs |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Competence Certificate

presentation, appr. 15 min., term paper, appr. 10 pages

Prerequisites

none

Recommendation

none

Annotation

The number of participants in the course is limited to 30 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geoecology and further study programs. The topics for the Term Paper are assigned at the beginning of the course.
6.168 Course: Theoretical Soil Mechanics [T-BGU-100067]

Responsible: apl. Prof. Dr. Andrzej Niemunis
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100067 - Theoretical Soil Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 6251801 | Theoretical Soil Mechanics | 4 SWS | Lecture / Practice / Niemunis |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.169 Course: Timber Structures [T-BGU-100028]

Responsible: Prof. Dr.-Ing. Philipp Dietsch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100044 - Timber Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6213801</td>
<td>Timber Structures</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Dietsch</td>
<td></td>
</tr>
<tr>
<td>ST 2022 6213802</td>
<td>Exercises to Timber Structures</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
written exam, 90 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.170 Course: Timber Structures: Materials and Appropriate Design [T-BGU-110853]

Responsible: Dr.-Ing. Matthias Frese
Dr. Carmen Sandhaas

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105371 - Timber Structures: Materials and Appropriate Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6213904</td>
<td>Timber Structures: Materials and Appropriate Design</td>
<td>4</td>
<td>Lecture / Practice (/)</td>
<td>Sandhaas, Frese, Sander</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 40 min.

Prerequisites
none

Recommendation
none

Annotation
none

Responsible: Jan Tzschaschel

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100581 - Track Guided Transport Systems - Operation and Capacity

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6234801</td>
<td>Operation Track Guided Systems</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Tzschaschel</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6234804</td>
<td>Operation Systems and Track Guided Infrastructure Capacity</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Tzschaschel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗒 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate

Written exam, 90 min.

Prerequisites

None

Recommendation

None

Annotation

None

Responsible: Jan Tzschaschel

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100010 - Track Guided Transport Systems - Technical Design and Components

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6234701</td>
<td>Track Guided Transport Systems - Technical Design and Components</td>
<td>3</td>
<td>Lecture / 🛩️</td>
<td>Tzschaschel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6234702</td>
<td>Exercises in Track Guided Transport Systems - Technical Design and Components</td>
<td>1</td>
<td>Practice / 🛩️</td>
<td>Tzschaschel</td>
</tr>
</tbody>
</table>

Legend: 🛩️ Online, 🛩️ Blended (On-Site/Online), 🗿 On-Site, ✗ Cancelled

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

none

Annotation

none
Course: Traffic Management und Simulation Methods [T-BGU-100008]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-100015 - Traffic Management und Simulation Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6232802</td>
<td>Verkehrsmanagement und Telematik</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ [4] Vortisch</td>
</tr>
<tr>
<td>ST 2022</td>
<td>6232804</td>
<td>Simulation von Verkehr</td>
<td>2 SWS</td>
<td>Lecture / Practice (/ [4] Vortisch, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
one

Recommendation
one

Annotation
one
6.174 Course: Transport and Transformation of Contaminants in Hydrological Systems [T-BGU-106598]

Responsible: Prof. Dr.-Ing. Erwin Zehe
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103872 - Subsurface Flow and Contaminant Transport

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6224803</th>
<th>Transport and Transformation of Contaminants in Hydrological Systems</th>
<th>4 SWS</th>
<th>Lecture / Practice (/ 🗣️)</th>
<th>Zehe, Wienhöfer</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.175 Course: Uncertainty Modeling, Artificial Neural Networks and Optimization in Structural Analysis [T-BGU-111932]

Responsible: Prof. Dr.-Ing. Steffen Freitag

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105929 - Uncertainty Modeling, Artificial Neural Networks and Optimization in Structural Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>-</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2022	6214809	Structural Analysis with Uncertain Data	2 SWS	Lecture / 🗣	Freitag
ST 2022	6214810	Artificial Neural Networks in Structural Analysis	1 SWS	Lecture / 🗣	Freitag
ST 2022	6214811	Structural Optimization	1 SWS	Lecture / 🗣	Freitag

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, x Cancelled

Competence Certificate

oral exam, appr. 40 min.

Prerequisites

none

Recommendation

none

Annotation

none
Course: Upgrading of Existing Buildings and Energetic Refurbishment [T-BGU-108001]

Responsible: Prof. Dr.-Ing. Kunibert Lennerts

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100108 - Upgrading of Existing Buildings and Energetic Refurbishment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type of Event</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6240901</td>
<td>Bauen im Bestand</td>
<td>3</td>
<td>Lecture / Practice</td>
<td>Lennerts, Schneider</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>6240903</td>
<td>Energetische Sanierung</td>
<td>1</td>
<td>Lecture</td>
<td>Kropp, Schneider, Münzl</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 70 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.177 Course: Urban and Regional Planning [T-BGU-100050]

Responsible: Tamer Soylu
Sebastian Wilske

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100007 - Urban and Regional Planning

Type: Oral examination

Credits: 6

Grading scale: Grade to a third

Recurrence: Each term

Version: 1

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>6231701</th>
<th>Stadtplanung</th>
<th>2 SWS</th>
<th>Lecture / Practice (/</th>
<th>Soylu</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6231703</td>
<td>Regional Planning</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Wilske</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🪜 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.178 Course: Urban Management [T-BGU-108442]

Responsible: Prof. Dr. Anke Karmann-Woessner

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-100013 - Urban Renewal

Type
- Oral examination

Credits
- 3

Grading scale
- Grade to a third

Recurrence
- Each term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Credits</th>
<th>Course</th>
<th>SWS</th>
<th>Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Lecture / Practice (/on-site)</td>
<td>2 SWS</td>
<td>Stadtmanagement</td>
<td></td>
<td>Karmann-Woessner</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>Lecture / Practice (on-site)</td>
<td>2 SWS</td>
<td>Stadtmanagement</td>
<td></td>
<td>Karmann-Woessner</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate
oral exam, appr. 15 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Urban Water Infrastructure and Management [T-BGU-106600]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103358 - Urban Water Infrastructure and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 6223701</td>
<td>4 SWS</td>
<td>Urban Water Infrastructure and Management</td>
<td>Lecture / Practice (/ Fuchs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🍉 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.180 Course: Wastewater Treatment Technologies [T-BGU-109948]

Responsible: PD Dr.-Ing. Stephan Fuchs
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-104917 - Wastewater Treatment Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>6223801</th>
<th>Wastewater Treatment Technologies</th>
<th>4 SWS</th>
<th>Lecture / Practice (/ 🧩)</th>
<th>Azari Najaf Abad, Fuchs</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
The accomplishment Term Paper 'Wastewater Treatment Technologies' (T-BGU-111282) has to be passend.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-111282 - Term Paper 'Wastewater Treatment Technologies' must have been passed.

Recommendation
none

Annotation
The number of participants in the course is limited to 30 persons. The registration is to be made via ILLIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering and Geoecology and further study programs. The topics for the Term Paper are assigned at the beginning of the course.
6.181 Course: Water and Energy Cycles [T-BGU-106596]

Responsible: Prof. Dr.-Ing. Erwin Zehe
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103360 - Water and Energy Cycles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Weekly SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6224702</td>
<td>Water and Energy Cycles in Hydrological Systems: Processes, Predictions and Management</td>
<td>4</td>
<td>Lecture / Practice / 🗣️</td>
<td>Zehe</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤨 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
submission of at least 50% of the weekly exercises plus a written term paper on a given topic, approx. 10 to 15 pages

Prerequisites
none

Recommendation
none

Annotation
as from summer term 2020 examination of other type
6.182 Course: Water Distribution Systems [T-BGU-108486]

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-104100 - Water Distribution Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6222905</td>
<td>Oberle</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
The accomplishment 'Project Report Water Distribution Systems' (T-BGU-108485) has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-108485 - Project Report Water Distribution Systems must have been passed.

Recommendation
none

Annotation
none
6.183 Course: Waterway Engineering [T-BGU-106780]

Responsible: Dr.-Ing. Andreas Kron
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103392 - Waterway Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Type
Oral examination
Credits
5
Grading scale
Grade to a third
Recurrence
Each summer term
Version
2

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6222803</td>
<td>Waterway Engineering</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Kron</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online
🧩 Blended (On-Site/Online)
🗣 On-Site
🗙 Cancelled

Competence Certificate

oral exam, appr. 20 min.

Prerequisites

The accomplishment 'Seminar Paper Waterway Engineering' (T-BGU-106779) has to be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-106779 - Seminar Paper 'Waterway Engineering' must have been passed.

Recommendation

none

Annotation

none
6.184 Course: Wildcard Transport of Heat and Fluids [T-BGU-111924]

Responsible:
N.N.

Organisation:
KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
M-BGU-100077 - Coupled Geomechanic Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>6339091</td>
<td>Transport of Heat and Fluids</td>
<td>2 SWS</td>
<td>see Annotations</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗑 On-Site, ✗ Cancelled

Prerequisites
None
Appendix: Curriculum by example

The selection of the start of studies, the study focuses and the modules is not at all any recommendation! It shall only show that the study can be completed within the standard period of study.

<table>
<thead>
<tr>
<th>Module (baui)</th>
<th>Module Title</th>
<th>Course</th>
<th>Type</th>
<th>1. Term (WS) HPw</th>
<th>CP</th>
<th>LC</th>
<th>2. Term (SS) HPw</th>
<th>CP</th>
<th>LC</th>
<th>3. Term (WS) HPw</th>
<th>CP</th>
<th>LC</th>
<th>4. Term (SS) HPw</th>
<th>CP</th>
<th>LC</th>
</tr>
</thead>
</table>

Construction Engineering

M1P1	Design and Construction of Components in Reinforced Concrete	Design and Construction of Components in Reinforced Concrete	L/E	2/2	6	ngA	wE
M1P2	Steel and Composite Structures	Steel and Composite Structures	L/E	2/2	6	ngA	wE
M1P3	Surface Structures and Dynamics of Structures	Surface Structures	L	2	3	ngA	wE
M1S14	Non-linear Analysis of Beam Structures	Non-linear Analysis of Beam Structures	L/E	2/2	6	oE	
M1S20	Basics of Finite Elements	Basics of Finite Elements	L/E	2/2	6	ngA	oE

Geotechnical Engineering

M5P1	Theoretical Soil Mechanics	Theoretical Soil Mechanics	L/E	4	6	wE	
M5P2	Earthworks and Foundation Engineering	Foundation Types	L/E	2	6	ngA	wE
M5P3	Rock Mechanics and Tunnelling	Basics in Rock Mechanics	L/E	2	6	ngA	wE
M5P4	Basics in Numerical Modelling	Continuum Mechanics	L/E	2	3	oE	
M5S02	Ground Investigation	Soil Mechanical Laboratory Exercises	E	2	6	oE	
M5S02	Ground Investigation	Geomechanical Field Exercise	E	2			

Subject-Specific Supplements

M1S03	Solid Construction Bridges	Solid Construction Bridges	L/E	2/2	6	wE
M1S08	Hollow Section Structures	Hollow Section Structures	L/E	2/2	6	oE
M1S18	FE-Applications in Practical Engineering	FE-Applications in Practical Engineering	L/E	2/2	6	oE
M5S04	Ground Water and Earth Dams	Geotechnical Ground Water Problems	L/E	2	6	oE
M5S04	Ground Water and Earth Dams	Embankment Dams (Advanced)	L/E	2		

Interdisciplinary Qualifications

| MUEQ | Interdisciplinary Qualifications | 'Interdis. Qualifications A' | S | 2 | 3 | ngA |
| MUEQ | Interdisciplinary Qualifications | 'Interdis. Qualifications B' | Pj | 2 | 3 | ngA |

Master's Thesis

| MMT | Master Thesis |
| MMT | |

Sum per semester

| 20 | 30 | 6E+ 6nA | 20 | 30 | 5E+ 2nA | 20 | 30 | 5E+ 1nA | 30 |

Explanation for the table:

- CP = credit point
- LC = learning control
- L/E = lecture and exercise, separate or integrated
- wE = written exam
- E = exercise
- oE = oral exam
- S = seminar
- ngA = not graded accomplishment
- Pj = study project